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-NOTES-
ON THE RATE OF CONVERGENCE OF RELAXATION METHODS*

By R. Plunkett (The Rice Institute)**

A recent paper by Frankel [1] gives the rates of convergence and a time estimate for
the solution of finite approximations to Poisson's equations and the biharmonic equation
by some of the standard iteration methods. This shows that in general the time required
is prohibitive for a reasonably large number of points. It is well known that relaxation
methods [2] are faster for hand computing but an estimate of rate of convergence is of
interest for machine programming for the prospective use of digital calculators. In
general the finite approximation to partial differential equations may be written:

Az + J = 0 (1)
where z is an n-element column matrix of the unknown values, and n is the number of
points taken in the region. A is an n X n square matrix, with a high degree of regularity;
the elements of the main diagonal are the largest and most of the other elements are zero;
/ is a known column matrix. If zm is the mth approximation to z, the matrix of the residuals
is defined by

Azm + / = Rm (2)

Then one element of zm is adjusted in such a way as to make the greatest reduction in
the value of Rm . Thus, if e, is a unit vector of /I-space, i.e., e, has zero for all its elements
except the i-th element which is 1,

Zvi +1 Zm Cm + i€i (3)

So far the value of Rm has not been defined, but it is clear that if all the elements of Rm
are reduced to zero zm — z. The usual approach in the numerical solution by relaxation
methods is intuitive, but it can easily be seen that if

_ e'jRm
C'"+1 e'Ae, (4)

then
e'{Rm+1 = 0.

Thus, this has the effect of reducing one element of Rm+1 to zero even though it may
actually increase the others. It has been shown [3], if A = A' and is a positive definite
form, that

Hm = \zLAzn + z'J (5)

will be reduced by such a step and the process must ultimately converge. It is difficult to
get an estimate for Hm , however, and so this is not the easiest criterion to use. In our case
we shall use the more customary standard of

I Rm i = (R,:,Rmy/2. (6)
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From Eqs. (3) and (2)

Rm + 1 ~ Rm Cjn + 1-At?i (7)

and

I Rm+1 I2 = | Rm I2 — 2cm+1RnAei + c2m+le'A'Aei (8)

with no restrictions on A. Thus

(| Rm \ — | R„+1 |)(| Rm | + | Rm+1 |) = 2cm+1R„Aei — ci+1e'A'Aei . (9)

Since in general | Rm | and | Rm+i | differ very little, letting | Rm | — | Rm+1 \ = ARm+1

.n 2cm+1RiAej — cj+^'A'Aej
Anm+i — 2 | | '

Let the elements of Rm be random variables with a mean value of zero, a maximum
value of pm and a standard deviation of bpm where & is a number less than one. Then the
mathematical expectation of | Rm | is:

| Rm | = n1/2bPm . (11)

The value of em+1 is found from Eq. (4) by taking i such as to make cm+1 take its largest
value. From Eq. (10) the mathematical expectation of ARm+1/\ Rm \ can be found.

From Eq. (4),

_ e[Rm pm
Cm + 1 e.-Ae,- an

f
and

RmAei dnpm .

where an is a typical element of the main diagonal.
Likewise

e'iA'Aej = la2{i ,

where I is a small number greater than one [for Poisson's equation I = 1.25, for the bi-
harmonic I — 1.72].

Thus,

2Cm + lRmAei ~ 2pm ,

cm+1e'A'Aei = I pi

or, the mathematical expectation of

.1(2 -I) 1 - 1/2 1
| Rm | 2nb\l ~ b2n " n'

where A; is a number not much greater than one unless b, the standard deviation ratio, is
very small. Thus for any reasonable distribution of the elements of Rm , the probability
of Ar?m+1/| Rm | being very much greater than k/n is small, or the standard deviation of
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this quantity must be of the same order of magnitude as the quantity itself. Since because
of the way it is found the correlation among these ratios for different m is small, then

Rm + n

I Rm I = ri (i - tI^t) (i3)t-1 \ | ftm+t |/

and

l08ifeT1- Slog('-fferl)-
Thus the mathematical expectation of

and a good working value for

■^rn + n • —k / ■* *\

'•= vrIY1" (14)
for large n.

The ratio of the standard deviation of rn to rn is of the order of magnitude of 1 /»*
times the ratio of the standard deviation of 1 — ARm+1/\ Rm |.
Since

1 _ + l __ ,

\Rm\~ '

and the standard deviation has already been seen to be of the order of k/n, this ratio will
also be of the order of k/n. Thus the standard deviation of r„ , which is even smaller by a
factor of 1/n*, would introduce little chance that rn can be greatly in error.

Since k is a number close to one, something like 20 such steps as are indicated in
equation (14) will reduce the error as measured by | Rm | to at most 10"6 of its original
value. This is in general agreement with the usual experience in relaxation techniques [2],
Each such series of n steps requires about as much computation as one iteration of the
whole matrix if the process of selection of cm+1 is ignored; this is of the order of dn arith-
metical manipulations where d is a small whole number of the order of 10, depending on
the number of terms of one row of A which differ from zero. If the operation of "compare"
which is necessary to find a maximum value for cm , takes e arithmetical operations, a
total of about 20 (e + d)n operations will be necessary to reduce [ Rm | to 10"8 of its
original value. The presently contemplated methods for "compare" [4] would make e
equal to n which makes the total about 20 n for large n regardless of the nature of A.
This may be compared with the best results obtained by Frankel for iteration methods of
about 20 n3/2 for Poisson's equation and about 20 n for the biharmonic equation. Thus,
there is no saving in a relaxation method, which is actually more difficult to program,
unless the problem is more complicated than the biharmonic equation. However, there
is a possibility of making the "compare" operation more rapid by proper design, which
would reduce the above estimate. From a purely heuristic viewpoint it is clear that by
any method, at least h n operations are necessary to evaluate n points, where h is a small
number greater than one; the difference between this and the above estimate is com-
pletely taken up by the "compare" operation.
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THE STABILITY EQUATION WITH PERIODIC COEFFICIENTS*
By HIRSH COHEN (Haifa, Israel)

In a large number of physical problems involving periodic motion, dynamic stability
considerations result in stability differential equations which have periodic coefficients.
In particular, if the physical system is described by a non-linear second order ordinary
differential equation, a second order equation of the Floquet type appears. That this
is not an isolated case becomes apparent if one reviews the large volume of non-linear
mechanics literature of the past few years. The problem to be discussed in this note is
even more specialized than the one just introduced but the same review through the
literature will reveal that it is an important case. This is the stability problem which
results when the non-linear element has small effect on the system, i.e., when the re-
sultant motion is near to the motion of the linearized system.

As an example consider the van der Pol equation

y" - e(i - y2)y' + y = o (l)

where primes refer to differentiation with respect to t. If y is taken to be of 0 (1) then
e <5C 1. The usual stability considerations involve the addition of a small (of order e)
time-dependent function, v(t), to an exact or approximate solution y<>(t). On substitution
into (1) of y = y0 + v(t), the equation of first order in v(t) is

v" - e(l - yl)v' + (1 + 2ey0y'o)v = 0. (2)

If the solution is to be a periodic approximation to y, then y„ is periodic and (2) repre-
sents an example of the general equation dealt with herein, namely

u" + ep(t)u' + e^q^t) + = 0, (3)

where u is the disturbance function being used to "test" some system, and p(f) and
qx(t) are periodic functions of period 2%/w.

It can be seen immediately that the Mathieu equation is a special case of (3). Further-
more, it would appear useful to remove the first order term in (3) and thus reduce it
to at worst a Hill equation. This may be done by the substitution

u = v(t) exp -|/pW' dt (4)
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