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for example an induction motor. The magnetic force producing the torque moves with
the synchronous angular velocity of the alternating current, whereas the rotor speed
falls below this by the slip, so that the magnetic force is moving relative to the rotor on
which it is producing a torque. The rate of work done on the rotor is the torque multiplied
by the rotor speed, and not the torque multiplied by the synchronous speed. In many
cases, as in this case, the difference in these two quantities may be lost as mechanical
work; in this case it appears as eddy current loss. The energy balance at the point of
application is a function of the detailed method of application of the force. A problem,
in which a similar difficulty in the use of partial and converted derivatives arose, ap-
peared in the discussion of the motion of a bar containing a hinge moving along its
length.2 In this case the wrong choice involved an apparent paradox: the failure of the
momentum principle.
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Let us consider the Hill equation

y" + [X + f(x)]y = 0, - oo < x < od , (1)

where f(x) is a real-valued periodic function of period 1 with the Fourier series

f(x) ~ c„ exP (2tinx), c„ = c_„ .

Recently Wintner([5], Eq. (23)) deduced the following inequalities satisfied by the lower
limit X0 of the spectrum of (1):

-Co ^ Xo ̂  -Co - 2 E I c„ I2. (2)
71= 1

Also the question is raised (Putnam [3], p. 314) whether the coefficient 2 on the right-
hand side is the least possible value. In the present note we shall show that better esti-
mates do exist. In particular, we shall show that

Xo ^ -Co — ^ | c„ |2. (3)
° 71= 1

For this purpose we note that X0 is characterized as the least eigenvalue of (1) con-
sidered on the finite interval 0 ^ x :§ 1 with the periodic boundary conditions

2/(0) = 7/(1), y'{ 0) = y'( 1) (4)
(see e.g. Strutt [4], p. 15). Therefore, according to the Ritz variational principle, X0 is
the minimum value of the expression

J[y] = [ 0y'2 - fy2) dx/ £ y2 dx,
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where y changes over real-valued functions subjected to the conditions (4). Let z(x) be
any periodic function of period 1 with integrable z'(x). Then we have

f (2zyy' + z'y2) dx = [zy2]l = 0
*>0

since both y and z are periodic. Hence

[ (y'2 ~ fy2) dx = [ [(y' + zy)2 + (z' - z2 - f)y2] dx

^ Min (z' - z2 - /)• [ y2 dx.
Jo

It follows that J[y] ^ Min (z' — z2 — /) and this implies

X0 ^ Min («' - z2 - /). (5)

Incidentally, this is an adaptation of Wintner's condition ([5], p. 368) to the eigenvalue
problem under consideration. By different choices of z we can obtain different lower
bounds of X0 .

First take as z an indefinite integral g of = / — c0 . Then z is certainly periodic and
(5) becomes

X0 ^ Min (—c0 — g2) = —c0 — (Max | g |)2. (6)

To estimate Max | g [, we introduce the oscillation A of g:

A = Max g — Min g.

Since g is continuous, there are values a, b of x such that g(a) = Min g, g(b) = Max g.
Since g is periodic, we may assume a < b < a + 1 without loss of generality. Then we
have

r»b /*a +1

A = g(b) - g(a) = fi dx = - f1 dx.
J a Jb

Hence
f*b f»a + l

dx.
n b n a +1

^ I /i I dx, A g | /,
J a J b

Addition of both inequalities and application of the Schwarz inequality give
11/2

2 A
r>a +1 r. l 11/2

= / I /i I dx = / | f1 | dx ^ / f\dx\ .
* a Jo L Jo J

Heretofore g has been determined only up to an arbitrary additive constant. If we choose
this constant appropriately, we can make g(b) = —17(a) = A/2. Then we have Max | g \ =
A/2 and hence

(Max | g |)2 ^ ~ f2 dx = | Z I c„

which, combined with (6), proves (3).
Another estimation of X0 is obtained by adjusting the arbitrary constant in g in such

a way that
g(x) = (2irin)~1cn exp (2-rrinx).
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Then we have

Max | g | ^ tT1 X) n~l | c„ |
n= 1

and (6) gives

X0 ̂  —c0 — ir~2( En'Mcj). (7)
\ n=l '

It will be noted that (3) and (7) are mutually independent. In any case, however, (7)
is better than the second inequality of (2), for we have

n~l I c„ I)2 tT2 2>"2 Z I |2 = | E | c„ |2

by the Cauchy inequality. In the same way it is seen that (7) is better than (3) if cx — 0.
It is not clear whether the coefficient 1/8 in (3) can still be replaced by a smaller one.

However, it cannot be made smaller than l/2x2 (Cf. Putnam [3], p. 314, where the
figure 1/47T2 is given). In fact, consider the case }(x) = 2c, cos 2irx with a real Ci (Mathieu
equation); then the formula of the usual perturbation theory (Courant-Hilbert [1], p.
300) yields easily the expansion

A„ = -(2x2)"1C? + ...

which is certainly convergent for sufficiently small value of | cx | (Kato [2], p. 169).
It will be noted that the lower bounds of X0 as given by the formulas (3) and (7) are,

though rigorous, not very accurate from the practical standpoint. Especially this is the
case when the Fourier coefficients c„ are large, for we have

CO

X0 ̂  -Max / ^ -c0 - 2 2 I c» I. (8)
n = l

as is easily seen by setting z = 0 in (5).
For more accurate estimation of A0 in individual cases, it is more convenient to use

(5) directly. For instance consider the case / = 2cx cos 2tx stated above. If we set
z — k sin 2-irx, we have by (5)

X0 Min [(2-wk — 2c0 cos — k2 sin2 2wx\

= Min [(fc cos 2tx + w — k~1c,)2 — k2 — (tt — k~'ci)2]

S: -k2 - (tt - AT'cO2.

This is true for every k. If we assume c, > 0 and take k = c}/2, we obtain

A0 S: —2c! + 2irc1/2 — it".

It is easily seen that the right-hand side coincides with the asymptotic expansion of X0
for Cj —>oo up to the order c\/2 inclusive (Strutt [4], p. 37, Eq. (4), where we have to set
X = 7T "X0 , h2 = 7T~2Ci , Mi = 1).
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