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1. Introduction. The class of vector differential equations considered in this paper
is represented by

d-r/dC - f(r) = b(0, (1)
in which r is a radius vector in a (.'artesian frame, f(r) is a point function derivable as the
gradient of a scalar, and b(t) is an arbitrary function of the independent variable t. In
its physical application, Eq. (1) determines the position of a particle subject to the
acceleration b + f at time t. To allow the wider interpretation of Eq. (1) as a curve in
three-space (for fixed initial conditions), t will rot be identified with time (except in the
applications of Sec. 3). The basic assumption will be made that f(r) (which, in general,
is a non-linear function of components of r) is a slowly varying function as compared
to arc length on any integral curve of Eq. (1). The scalar corresponding to f(r) will be
assumed differentiablc to fourth order at least, and the function b(<) will be assumed
differentiable at the initial point of any integral curve of Eq. (1) to third order at least
(but otherwise merely Riemann-integrable).

In a previous paper (referred to hereafter as I) by the author and others [1], a special
case of Eq. (1) was treated, in which f(r) and b(£) were the gravitational and non-gravi-
tational accelerations respectively of a particle. A quasi-linear approximation for two-
dimentional motion was described, which takes into account terms in f of higher order
than does a linearized approximation, and which depends on the assumption that the
radius of curvature of the corresponding trajectory be slowly varying. In this paper,
the quasi-linear approximation in question is generalized in two directions: (a) to three
dimensions (by assuming that the radius of torsion of an integral curve is likewise slowly
varying); (b) to include an arbitrary f(r) derivable as the gradient of a non-harmonic
scalar. The approximation exploits the fact that coordinate distances (canonical co-
ordinates) along the tangent, principal normal, and binormal of an analytic integral
curve are proportional (within dominant terms) to the first, second, and third powers
of the arc length,' respectively, by virtue of the Frenet-Serret formulas. Hence, non-
linear terms in f through third order in the arc length can be expressed as linear functions
of the canonical coordinates and thus of any Cartesian coordinates. In a sense, the
approximation considered is the analogue in the non-linear case of Liouville's approxi-
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mation [2, 3] (referred to as the Wentzel-Kramers-Brillouin-Jeffries approximation
[4, 5, 6] in quantum mechanics). A prefatory discussion of the linearized approximation
to Eq. (1) is given first.

Some remarks on the practical use of approximations of the type considered are
in order. The general function of such approximations is to determine corrections to a
zero-or first-order solution for a limited range of the independent variable. Approxima-
tions of this type cannot compete, of course, with modern numerical methods of solution
for an extended range of the independent variable. For moderate ranges of the inde-
pendent variable, however, linear approximations can be applied piece-wise by identi-
fying initial conditions on one interval with terminal conditions on a preceding interval.
Such a continuation solution has been used in 7 for the computation of an actual tra-
jectory.

2. Linearized Approximation. The scalar potential <p, in terms of which f = V<p,
will be expressed as a function of three coordinates x, (?' = 1,2,3) forming a Cartesian
frame (right-handed in the order given) with origin at the initial point 0 of an integral
curve in question. The Taylor expansion of ip in these coordinates at 0 will have the
form

(1) _j_ (2) | (3) . (4) , /0\
ip = <p + <p + <p + <p + • ■ • , {■£)

where <p = 0 at 0 and each term is a rational integral homogeneous function of the x,
(the superscript notation indicates the degree). Through quadratic terms, <p will be
written

<p = 12 A<x< + H PijXiX,- , (h j = 1, 2, 3), (3)
where Bit = B,, .

A matrix notation {aj will be used interchangeably with a for a vector, where {a}
stands for the column vector \au a2 , az\ of components. The linearized approximation
fa> to f consists in retaining only terms in <p through second order. From Eq. (3), it is

{/"' I = A + P{rJ, (4)
where {rj = {x,}, A = {A}, and the coefficient matrix P is

P = 2B (5)

in terms of the matrix B = [Bit]. With the notation r' = dr/dt, the corresponding linear-
ized approximation to Eq. (1) is

{r"J - Pjrj = {6} + A, (6)

which assumes that f is a slowly-varying function of position with respect to arc length
on an integral curve.

Since P is a symmetric matrix, its eigenvalues are real, and Eq. (6) can be solved
directly by reduction to normal coordinates. The solution for the normal coordinate
xi corresponding to the negative eigenvalue — co ■ of P is

t'i = v'iUi1 sin oiit + Ui1 / [&'(?•) + A'i] sin co,(i — t) dr,
J 0 (7)

where v\ is the initial value of dx'Jdt and b' + A' is the transform in the normal coordi-
nates of b + A. For a positive eigenvalue of P, the circular functions in Eq. (7) must
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be replaced by the corresponding hyperbolic functions. In the classical theory of small
oscillations of a particle, eigenvalues leading to such hyperbolic solutions are usually
excluded. Such exclusion is not necessary (at least on purely mathematical grounds)
in the application to particle motion of the linear approximations discussed here, since
the application is to the initial phase of a forced motion. For this reason, the approxima-
tions do not necessarily carry implications on the boundedness in the large of the corre-
sponding motion. Note that, from Earnshaw's theorem [7], all the eigenvalues of P can
be of one sign only if <p is non-harmonic.

Ordinarily, the coefficients must be determined by direct expansion of <p. The
Appendix describes a method of determining these coefficients which relates them to
geometric parameters of the equipotential passing through the origin 0. For the purpose
of formulating this result , take the x:,-axis in the direction of —V<p, and take the x, —,
x2— axes in the directions of the lines of curvature of the equipotential surface <p = 0
in the tangent plane of this equipotential at 0. Let r, and r2 be the principal radii of
normal curvature of this surface at 0 in the directions of x, and x2 respectively1. Let
?-li2 be the derivative evaluated at 0 of the principal radius of normal curvature in the
Xj-direction with respect to arc length on the line of curvature in the .redirection; and
let r21 be defined correspondingly. The matrix B is then

■R —B ~ 2

0 T2,i7"2

r2 ri,2ri

— r^r,1 — (r,1 + r2' + <r0//o).

(8)

where <s» is a mass density defined by Poisson's equation VV = —c at 0, and /0 = | |
at 0. The vector A is {0, 0, — /0} in the particular frame introduced here. Equation
(8) is convenient when the form of the equipotential is a datum given directly (as it is
for f a gravitational acceleration). Use will be made of it in an application in Sec. 3.

3. Quasi-Linear Approximation. For a non-vanishing initial dr/dt, the corresponding
integral curve is analytic at the initial point 0, since and b are assumed differentiate
at 0 (to third order, at least). Hence, the radius vector r to a point on the curve can be
expanded in the Taylor series [8]

(3 2 /« p'[3 y\s3 .r = as + — s — i ~2 + ~~2~ + (« + ""> (9)
Zp (p p pTj b

where s is the arc length on the curve; a, y are the unit tangent, unit principal normal,
and unit binormal at 0 respectively; and p, t, p are the (non-vanishing) radius of curva-
ture, (non-vanishing) radius of torsion, and derivative of p with respect to s respectively
on the integral curve at 0. Equation (9) is equivalent to the standard Frenet-Serret
formulas. It is understood that a, 5; Y, P, T, p' are constants evaluated at 0, but speci-
fying subscripts will be omitted for convenience.

The coefficients of the terms of order s* and higher in Eq. (9) contain products of
powers and derivatives with respect to s of 1/p and 1/r. If all derivatives of p and r
with respect to s are sufficiently small, one can take s sufficiently small so that terms

lThe principal radii r, and r2 are taken positive or negative according as the corresponding centers
of curvature lie on the positive or negative half of the z3-axis.
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of the form s4/p3, s4/p2t, • • • (which do not involve derivatives) are negligible in Eq.
(9). In this case, r is given by the terms of the series (9) which are indicated explicitly.
The permissible range of s for this approximation is given by s « p, r and is thus smaller
as p and t are smaller. Correspondingly, the terms of order s" and s3 in Eq. (9) are then
smaller for p and r smaller. Since these terms form the basis of the quasi-linear approxi-
mation to be described, the range of s over which this approximation yields a significant
correction to the linearized approximation is greater for p and r larger.

On these assumptions, Eq. (9) determines any x{ as a linear function of s, s2 and s3,
which is given by

{r} = r'Sjs'}, (10)

where js'} designates the column vector {s, s2, s3}, r' is the transpose of the matrix r
of direction cosines of a, (J, r,

r =

a, a2 a3

01 02 03

LTl 72 73

(ID

and the matrix S is

1 0 —(6 p2)"1

S = 0 (2 p)- -p'(6p2)- . (12)

.0 0 —(6pr)_I

Note that the components of the column vector S js*) in Eq. (10) are simply canonical
coordinates of the curve. Equation (10) can be inverted and written

{»'} = S-r {r}, (13)

where

1 0 — rp

S"1 = 0 2p —2 p'r (14)

.0 0 —6pr .

provided S is non-singular, which is true if the determinant

| S I = — (12p2r)_1 (15)

be non-vanishing. Thus the following results apply to an integral curve of Eq. (1) which
is curved (1/p ^ 0) and twisted (1,/r ^ 0) at the origin; the special case of an integral
curve which is plane at the origin will be treated later. Under these restrictions, Eq.
(13) expresses s, s2 and s3 linearly in terms of coordinates x, of the curve.

If quintic and higher terms in <p are neglected, f can be written

{/} = A + P(r} + {Vip<3>} + {W(4>). (16)
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In general, the cubic and quartic terms of <p, <p'3) and <p(i), are polynomials having re-
spectively 10 and 15 coefficients (these two sets of coefficients can depend on only 7
and 9 independent constants respectively if <p is harmonic) [9]. These terms will be
written

<P(3) = 23 CatXiXjXk , (i, j, k = 1,2, 3), (17a)

<p(,) = 23 Diitlxixixkxl , (i,j, k, I = 1,2, 3), (17b)

where the indices run over the ranges given to yield no redundancy of symmetric terms
(differing only in subscript order in the coefficients Ciik , Dijki). Thus, the components
of A <p<3) and A <p'il are homogeneous polynomials of degree two and three respectively
in :r, . But, from Eq. (10), any power (1 < q < 3) can be expressed as a polynomial
in s of lowest term s". If the expressions derived in this way for x\ are substituted in the
expressions for V <p(3> and V <pUl corresponding to Eqs. (17a) and (17b) respectively,
and powers of s above the third are dropped, one obtains

{/) = A + P{r} + (E + F) {s*}, (18)

where the square matrices E and F are derived from the terms V and V <pU) re-
spectively of f in Eq. (16). Since V >pm is quadratic in x, , it can contribute no term
to f which is linear in s; hence, E = [£',,■] can be partitioned by columns thus

E=[0 ,E»,Eit}. . (19)
Similarly, V can contribute no terms to f which are linear or quadratic in s; hence,
F = [Fi,] can be partitioned

F = [0, 0, F«], (20)

The non-vanishing elements of E and F are given by

E,2 - 3C,,,a2 + 2a, 23 V + 23 CipQava, , (21a)

E,3 = p 1 j^3C,,,a,(3, + 23 + Piav) + ^ E C.i><i(aA + &,a«)J, (21b)

F,3 = 4Duiia* + 3a? 23 DiUj>ap + 2a, 23 Diivqavaa + 23 ^«»«r, (21c)
V V<Q V,Q.r

where the indices p, q, r run over the range 1, 2, 3 exclusive of i to yield no redundancy
of terms differing only in order of subscripts in the coefficients Ciik , Diik, . Equation
(18) contains the non-linear terms of V <p through order s3 expressed as a linear function
of s2 and s3.

Finally, by means of the linear relationship (13) between {s*} and {r}, Eq. (18)
yields the quasi-linear approximation f<2> to f,

{/"'}= A + (P+Q){r}, (22)
where

Q = (E + F)S-Ir (23)
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is a constant square matrix whose elements depend only on coefficients of <p and the
initial conditions of the motion (through the parameters a, 5, y, p, r, p'). The parameters
a, (J, y entering Q through r can be evaluated directly from standard formulas [8] as

v0 „ v„ X (bo -{- A) v> /o,i\
'-«• 5 " I v„ X <b„ + A) 1 X *• (24)

where v0 (of magnitude v0 ^ 0) is the initial value of dr/dt, and b0 5^ —A is the initial
value of b. The values of p, r and p' in S_1 are given by

1/p = p03 | v0 X (b0 + A) |, (25a)

1/t = pv03v0 X (b0 + A)-d0 (25b)

p' = pvo3[3v0-(b0 + A) - p(Td0], (25c)

where the vector d0 is defined by

{do} = {(&•).} +P{f0|. (20)

The corresponding quasi-linear approximation to the differential equation (1) is

{r"} — (P+QMr} = {6} + A. (27)

The matrix Q vanishes and hence Eq. (27) reduces to the linearized equation (6) as
p, t —> 0; thus the magnitude of the quasi-linear correction as well as the range of s over
which it is valid is greater for p and t larger.

The quasi-linear equation (27) differs from the linearized equation (6) in an im-
portant respect. Unlike P, the matrix P + Q is not symmetric in general, and thus
Eq. (27) implies some unilateral coupling of its component equations. Since P + Q can
have complex eigenvalues, reduction of the equation to normal coordinates is not
generally possible. In view of this complication, analytic solution of the system (27) is
best carried out by the Laplace transform method or other operational technique.

The quasi-linear approximation (22) for f is equivalent to the expression of Eq. (18),
which clearly contains all terms in f of order s3 or lower. Since s = 0(t) when v0 0,
it follows that the Taylor expansion of the quasi-linear solution agrees with the true
Taylor expansion of r through terms2 of order t5, as compared to the linearized solution,
which agrees through terms of order t3. For v0 non-vanishing, an integral curve of the
quasi-linear equation has contact of fifth order with the actual integral curve at the
initial point. The approximation is of osculating type in general, since it amounts to
evaluating f on the osculating sphere of the integral curve at the initial point.

The constraint that an integral curve lie in an equipotential surface requires a con-
dition on b for a given f; the condition [10] is

K + fn = (r')Vr, , (28)
where bn + /„ is the component of b + f normal to the surface and r, is the radius of
normal curvature of the surface in the direction of the curve. When the potential <p is
spherically symmetric, the quasi-linear equation (27) becomes exact for integral curves

^he partial sums through terms of order t5 of both Taylor expansions exist, because of the differ-
entiability assumptions on Vp and b.
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lying entirely in an equipotential. To show this result, select xa in the direction of — V <p
(of magnitude /0) at 0, and let R0 be the directed distance from 0 to the center of
symmetry. From the symmetry of the field V </>, one can write directly

{r"J - /oflo-fr} = {&} + {0, 0, -/„} (29)

for an integral curve on the equipotential <p = 0. For such an integral curve which is
twisted at 0, the partial sums through terms of order f of the Taylor expansions of r
are identical for the solution of Eq. (29) and the solution of the quasi-linear equation
(27). This fact is sufficient to show that /0S01 is a triple eigenvalue of P + Q, and thus
one has

P+Q=/ofto'l (30)

in this case, where I is a unit matrix. A corresponding theorem can be proved for the
case where <p is cylindrically symmetric; the theorem for plane symmetry is trivial. In
these special cases, the matrix P + Q is symmetric and all its eigenvalues are of one
sign (even if <p is harmonic).

The preceding treatment is not valid for an integral curve which is plane (1/r = 0)
at the initial point O, because the inversion of Eq. (10) to yield Eq. (13) is not possible.
In this case, if p be finite and non-vanishing at the initial point, an analogous treatment
can be carried out by noting that S has a non-singular submatrix. In the corresponding
development, of which the results will be stated, only terms in <p through the cubic
ip'3) can be included. Let T-1 and A be the submatrices

T-1 =
1 0

A =
aI a2 a3

-01 02 03.
(31)

.0 2pJ
of S-1 and r respectively. If one writes

R = [0, Ei2]T~' A, (32)

where the partitioned matrix [0, Z?,2] is of 3 X 2 order, the corresponding quasi-linear
approximation to Eq. (1) is

{r"} - (P + R){rj = {b} + A, (33)

which reduces to the linearized equation (6) for p —> 0. For vn non-vanishing, an integral
curve of Eq. (33) has contact of fourth order with the actual integral curve at the initial
point, and the corresponding Taylor expansion of r agrees with the true Taylor ex-
pansion through terms of order t*.

4. Applications. The preceding results will be applied to the case where f represents
a gravitational acceleration. The value of the coefficient matrix P of the linearized equa-
tion which corresponds to a spheroidal earth rotating with angular velocity 0 will be
obtained from Eq. (8) on the basis of Clairaut's first-order theory [11] of the variation
of gravity. This matrix for the case of a non-rotating spherical earth is given in I. A
solution of the quasi-linear equation (33) for plane motion corresponding to this value
of P will be obtained.

The initial point 0 will be taken on the surface of the earth (Fig. 1), with the z3-axis
directed along the outward normal to the surface, the 2,-axis in the direction of a meri-



152 J. J. GILVARRY [Vol. XI, No. 2

dian, and the x2-axis in the direction of a parallel of latitude (with right-hand sense).
The potential <p at points external to the earth can be written

f — + <Pc , (34)

in which <p„is due to Newtonian attraction, and

<pc = ^ (QR sin 6)2 (35)

is the potential due to centrifugal reaction at the point (R, 6), where R is the radial
distance from the earth's center and 8 is the corresponding polar angle from the earth's
axis. The potential <pa can be represented as due to sources entirely within the earth
and thus is harmonic at the earth's surface; hence, the mass density a (which is fictitious
in this case) is fixed by <pc alone as

a = -fi2. (30)

On the first-order theory [11], the potential (34) leads to a radius R of the earth for
colatitude 0, and a surface value g of the gravitational acceleration given by

R = R„( 1 — A cos2 9), (37a)

g = g.,(l + B cos2 6), (37b)

where Rea and gea are equatorial values of R and g respectively, and A and B are para-
meters which depend on geometric constants of the earth, its mass, and its angular
velocity. The lines of curvature of the (approximate) ellipsoid of revolution represented
by Eq. (37a) are the meridians and parallels of latitude; the principal radii rl and r2 of
normal curvature at 0 are equal respectively to the (negative) radius of curvature of
the meridian at this point and the (negative) distance from this point to the polar axis
along the surface normal [8], Thus, one can write from Eq. (8),

' 1 + P'n 0 P'ta

P = "to2, 0 1 + P'22 0

Pil o -2 -PL 33 J

(38)

where
= g.JR.a , (39)

and the assumption A, B « 1 yields
P[, = 2A + (B - 3A) cos2 6, (40a)

P'22 = (B — A) cos2 6, (40b)

P'33 = 2 | A + 15 + 2(B - 2A) cos2 6, (40c)

P[3 = P'31 = A sin 26. (40d)

In determining Eq. (40c), use has been made of Clairaut's theorem [11],

-¥ = ^04 +£), (41)
o
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so that the elements of the coefficient matrix P do not contain the earth's angular velocity
SI explicitly.

To determine the coefficient matrix R of the quasi-linear equation for plane motion
(1/r = 0) in a gravitational field, it is sufficiently accurate for the purpose at hand to
take <p = ge Rl/R, which corresponds to a non-rotating spherical earth of mean radius
R, and corresponding mean surface gravity ge (as defined in I). The value of R is then

where, for j = 1, 2, 3,

in which the factor

r =[#:■,], (42)

R'u = GXa&sPip/R^ , (43a)

Rij = Q\a2a3^jp/ReQ , (43b)

R'3i = 3X(1 - 3c&fiip/R., , (43c)

X = 1+|a+|b (44)

arises from expressing g, and R, in terms of g,„ and R,„ respectively by means of Eqs.
(37) and results in I. Equations (42) and (43) generalize to an arbitrary plane of motion
the corresponding result3 in I.

A solution of the quasi-linear equation (33) corresponding to P of Eq. (38) and R
of Eq. (42) will be obtained for the special case of motion in a vertical plane at 0. Take
new axes x[ , x'i at 0 (Fig. 1), where x[ is along the trace of this vertical plane in the Xi ,

Fig. 1. Coordinate frames on spheroidal earth.

3The coefficient matrix A0 of Eq. (45) in I is in error as printed; the element in the first row and
second column should have a negative sign prefixed. Otherwise, the results correspond with the identi-
fication h , x2, x3 = x, y, z; ct2 = = 0 in Eqs. (42) and (43) above.
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x2 plane and x3 — x3 . Let 77 be the azimuth (positive sense from x, to x2) of the xf-axis
relative to the xj-axis. The transform of Eq. (33) in the x[ , x3 frame is

■ 2
+ 03,Q

Ui

1 + Pn P13

_p.ii 2
(45)

where

pn = P'n cos2 tj + P'22 sin2 t) - R'n , (46a)

p33 = P'» + R',, , (46b)

P13 = P[3 COS T) - R'3 , (46c)

p,i = PL cos v ~ RL , (46d)
in which the R', are defined by Eqs. (43) in terms of direction cosines (J' referred to
the x[ , x'3 frame. Under the approximation | piS j « 1, the solution of the quasi-linear
system (45) corresponding to the initial velocity {v[ , v'3} is

x[ = v[wil sin ccit + cor1 / &KT) sin co,(£ — t) dr
J 0

r ' (47a)
+ | PiajwMO + fo lb'3(r) - g]s(t - r) drj,

x3 = y3'c031 sinh u3t + toj1 / [&3'(t) — g] sinh a>3(t — r) <h

(47b)
+ | P3i|'-'ts(0 + ^ b[(T)s(t - r) c/r|,

where

Wl = «..(l + | p„), 0.3 = 2,/2o>e„(l + | p,,), (48)

and the function s(t) is defined by

s(t) = cof1 sin coit — coj1 sinh oj3t. (49)

The corresponding linearized solution is obtained by letting p —* 0 in the parameters
Pa . Note that the restriction | piS | « 1 imposed to obtain the solution (47) requires
P « Rea in Eqs. (43) for the elements of the matrix R.

The author wishes to acknowledge helpful discussions of this problem with Dr. R.
Isaacs, Dr. A. Latter, Dr. G. Peebles and Mr. H. Kahn of The RAND Corporation,
and with Prof. T. Dantzig of the RAND consulting staff.

Appendix

In this appendix, Eq. (8) of the text for the matrix B will be derived. Take coordinate
axes as specified by the text in connection with this equation. It is known that, in these
coordinates, a plane parallel to the tangent plane of a surface and at the signed distance
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p = xfrom it cuts the surface in a curve (the Dupin indicatrix) defined within terms
of second order by [8]

p = Zi/2 r, + xl/2r2 + • • • . (x3 = p), (1A)

where r, and r2 are the principal radii of normal curvature of the surface at 0 in the
directions of x, and x2 , respectively. From Eq. (2), this curve is likewise given by

p = fo\Bux'i + 2 BV2XiX2 + B22x\) + • • ■ , (x3 = p), (2A)

if /„ = | V if | at 0. Comparison of Eqs. (1A) and (2A) yields

#n = Si2 = 0, B22 = -2f0r;\ (3A)

The coefficient B33 can be fixed by the condition that <p, in general, satisfies Poisson's
equation V2 <p = —a, where o is a mass density. This condition yields

B„ = (4A)

where Km is the mean curvature r^1 +' r2_1 of the .-quipotential and a0 is the mass
density at 0.

To evaluate B,., , consider a plane normal to the x,-axis at the signed distance p = xl
from 0. One can show that the equation of the curve of intersection of this plane with
the equipotential ip = 0 is, within second-order terms [8],

t:<( 1 + r2Ap/r2) = p2/2rl + x\/1r2 + • • • , {xt = p), (5A)

where r2il is the derivative evaluated at 0 of the principal radius of normal curvature
in the x2-direction with respect to arc length on the line of curvature in the x^direction.
From Eqs. (2) and (3A), this curve is likewise defined by

x3{ 1 - 2foiB13p) = p2/2r, + x2/2r2 + • • • , (x, = p), (6A)

which yields

B13 = 2 for2. \r2 (7A)

by comparison with Eq. (5A). Similarly, one has

B23 = g fori,2rt > (8A)

where r,.2 is the derivative evaluated at 0 of the principal radius of normal curvature
in the x,-direction with respect to arc length on the line of curvature in the x2-direction.
These results yield Eq. (8) of the text.
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