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numbers of reflections are 9, 15 and n + 1. This completes the proof for the case of three
mirrors.

For more than three mirrors all the considerations preceding equation 2 are valid,
but the corresponding inequality has no integer solutions at all.

To prove only Synge's result, which is included above, a much simpler method
suffices. If a point arbitrarily near a vertex is reflected successively once in each of the
sides meeting there the image remains arbitrarily close to the vertex. The third reflection
must bring it to the antipode, an angular distance arbitrarily close to t radius. Thus
the angular distance from the vertex to the third side is arbitrarily near x/2, and this
applies to each side. Thus the triangle must be an octant of a sphere, which completes
the necessity proof. The sufficiency is proved by reflecting an octant three times in its
sides.

It is of interest to compare our results with those described on pps. 81-83 of Coxeter's
"Regular Polytopes" (Methuen, London, 1948). There the discrete groups of reflections
generated by three or more concurrent planes are deduced. It is first found that all the
dihedral angles must be of the form ir/n, then equation 2 is applied, and the solutions
are given by equation 3, with none for more than three planes. In the problem of discrete
groups all sequences of reflections are permitted, while in the present problem only
"admissible" sequences of reflections are permitted, which is a weaker condition. On
the other hand we have the condition that some admissible sequence must carry each
point into its antipode, and this condition is strong enough to limit the solutions to those
given in equation 4—a subset of the configurations generating discrete groups.

The new parallel reflecting configurations given herein may have practical value in
some applications because they reflect back only those rays which are incident from a
certain angular region, and the angular region may be made much smaller than that of
the mutually orthogonal mirrors.

I wish to express my indebtedness to my colleague, Prof. Wilhelm Magnus, who
supplied a crucial part of the necessity proof given above.

NOTE ON SELF-PROPAGATION OF TURBULENT SPOTS*
By CARL E. PEARSON (Harvard University)

Introduction. Emmons (1), (2) has recently directed attention towards the manner
in which transition occurs from a laminar to a turbulent boundary layer. It appears that
the dominating phenomenon is the spontaneous generation of a large number of tur-
bulent "spots" which grow rapidly and eventually coalesce. It has been observed ex-
perimentally that, except perhaps immediately after generation, each spot grows in
such a manner as to maintain geometric similarity. Because the spot is growing in a
boundary layer, the rate at which an elemental portion of its periphery propagates its
turbulence outwards is dependent on the orientation of that portion; this dependency
of propagation rate on orientation is necessarily associated with the shape of the spot.

It is the purpose of this note to prove the simple but interesting result that for either
of two reasonable speculative hypotheses concerning propagation rate, the shape of the
spot approaches a certain asymptotic shape which is independent of the initial spot
shape.
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Material point hypothesis. It is possible to conceive of the propagation of turbulence
into a non-turbulent region as being due to the effect of small random eddies being con-
tinually induced in the quiescent fluid immediately adjoining the turbulent region. In
a laminar boundary layer, the propagation of such induced turbulence may lie con-
sidered as being at a rate which is dependent on the orientation of the turbulent surface
in question and in a direction perpendicular to the surface; this leads us to the following
equivalent picture.

Suppose that at every instant of time a set of material points occupy a closed convex
curve in the plane. Assume that each material point moves perpendicularly to the curve
on which it lies and with a velocity It(6) depending only on the slope 6 of the curve at that
point. Let the family of curves generated in this way be represented parametrically in
the complex plane by

z(9, i) = x(6, t) + iy(6, t)

I being the time. Consider first the rate at which the 6 value associated with a particular
material point changes in time.

In Fig. (1), let A and B be positions occupied by the curve at times t and I + At,

Fig. 1. Neighboring trajectories.

and let C and D be two neighboring orthogonal trajectories (i.e., paths followed by two
neighboring particles). Then to the first order, the change in 6 for a particle on trajectory
D occurring in a time interval At is

AO- -(g 8.411/ J,.
where

and therefore

~ se = R(e + se) - R(e),

d9 _ dR /ds
dt dd/ dd'

Now the velocity of the material point is

dz dz dz dd
dt ~ dt 38 dt
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whence

)(?»+'?,)-«"(!- 4
But the right hand side is a function of 6 alone, and the equation may therefore be
integrated to yield

e
<11i
<16 Hi) i + C(e),

where ( '{6) represents the parametric position of the curve at time t = 0. Thus the curve
approaches the asymptotic motion

x = l{j{ sin 6 + cos 0^,

(f sin 0 - It cos ̂ ).y ^ sin 0

(These two equations may also be used to determine R is the asymptotic shape is known
from experiment).

Wavelet hypothesis. Each point on the periphery of a turbulent spot may be re-
garded as the continual origin of a disturbance which spreads outwards from it in time;
the instantaneous envelope of these disturbances is then the self-propagating curve
itself. The shape of the disturbance surrounding any point of origin need not be circular
if the region into which it spreads is inhomogeneous (as in the case of a laminar boundary
layer). Let the velocity of the (infinitesimal) disturbance be R (/3) as shown in Fig. (2).

Fig. 2. Wavelet velocity.

Then if the equation of the closed curve is

x = f{d, t), y = g(6, t),

the equation of a wavelet emanating from the point (9) will be, after time At,

x — f(6, t) = AtR(P) sin /3,

y - g(6, t) = AtR(0) cos p.
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The equation of a neighboring wavelet will be

x - f(0 + Ad, t) = AtR(P + A/3) sin (/3 + A/8),

y - g(6 + Ad, t) = -AlR(p + A/3) cos (/3 + A/3),

and hence the relation between 6 and fi is obtained from

~ A6 = —At-~z(R sin /3) A/3,d0 op

dfQ Ad = A/ ~ (R cos /3) A/3,

whence

dg/dfl _ _ a(7? cos /3) /d/3 , .
a//ae ~ ta " a(« si"h 13)/dp'

This equation gives the direction /3 of the intersection point of the wavelets as a function
of d.

Now consider again the curve to be composed of material points, this time moving
in the /3-direction of Eq. (1).

A u = r 1 [y(d + Ad, t + At) - y(d, t + Af) y(fl + A0, fl - y(fl, Q
d< ̂  ; A< \x(fl + A d,i+ At) - x(d, t + At) x(B + Ad, t) - x{d, t)

= .. J_ Jdy/dd - At(d(3/dd) d(R cos 0)/d0 _ dy/dd\
~ At \dx/dd + Atidp/dd) d(R sin P)/d/3 dx/ddJ

_ dy/dd j(d/3/dd) d(R cos <3)/d/3 (dfi/dd) 6(R sin
~dx/dd \ dy/dd dx'dd J

= ~i/al fe(R cos + tan elp{R s'm = °'
by (1). Then

whence

and similarly

dx T3 • o dx . dx d(i dx~=RSmf) = - + -- = -

x = (R sin 0)t + F((3).

y = — (R cos /3)t -f- G(8),
where F(/3) and G(J3) are the parametric representations of the original curve, /3 being
now used as the parameter for convenience. Thus there is an asymptotic shape, in fact,
that of Fig. (2).
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