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ON THE DEVELOPMENT OF PLASTIC HINGES IN RIGID-PLASTIC BEAMS*
By M. G. SALVADORI axp F. DIMAGGIO (Columbia University)

Synopsis. A study is made of the development of plastic hinges in free-free, rigid-
plastic beams acted upon by certain types of distributed, dynamic loads, characterized
by a concentration parameler ¢, whose value varies between zero and infinity as the load
distribution varies from a uniform to a concentrated load.

It is found that as the load intensity increases a plastic hinge is first developed at
the center of the beam, whatever the value of the concentration parameter.

As the load intensity increases beyond this value, the development of successive
hinges depends upon the parameter ¢: two additional hinges develop laterally if ¢ > 3.45,
while the central hinge first splits if ¢ < 3.45 before lateral hinges can develop. In the
first case the lateral hinges wander toward the center of the beam. In the second a wider
central portion of the beam becomes plastic.

1. Introduction. The eclasto-plastic behavior of free-free beams under dynamic
loads or initial velocities has recently been studied by Bleich and Salvadori', who
obtained expressions for the elasto-plastic displacements and the plastic deformations
in terms of infinite series expansions of normal modes.

Bleich and Salvadori showed that upper bounds for the plastic angle developed at
the center of a free-free beam under symmetrical loads or velocities may be obtained
by considering the beam as a rigid-plastic body (as suggested by Prager for concentrated
dynamic loads). These bounds are good approximations of the true plastic angle when-
ever the dynamic loads or initial velocities are so high as to produce bending moments
several times larger than the capacity moment. Another approximation of the plastic
angle may be obtained by freezing the beam into a rigid-plastic body at the time when
the first hinge is developed. In the case of initial velocities this approximatien is often
a lower bound of the plastic angle.

Lee and Symonds® obtained upper bounds for the plastic angle and studied the
successive development of plastic hinges in rigid-plastic, free-free beams acted upon
by a normal concentrated dynamic load P at the middle point. They proved that, after
the appearance of a central plastic hinge, two additional hinges develop laterally, which,
as the load increases, wander toward the center of the beam.

In what follows the development of plastic hinges due to a symmetrical distributed
load p is studied by means of a concentration parameter ¢, which permits the distribution
of p to vary from a uniform load p,, corresponding to ¢ = 0, to a concentrated load P,
corresponding to ¢ = .

2. Rigid-plastic beams. A rigid-plastic beam is an idealized beam of infinite rigidity
capable of becoming plastic suddenly at a section where the bending moment due to the
loads and the inertia forces reaches a given value, the so-called capacity value M, . The
material of a rigid-plastic beam has therefore a stress-strain diagram of the type indi-
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cated in Fig. 1. Let us consider, in particular, a rigid-plastic, free-free beam of length
2l and constant mass m per unit of length, acted upon by a distributed normal load
p(z, t) and referred to an z-axis with origin at its middle point (Fig. 2). Under the as-
sumption that the load p be symmetrical with respect to the origin and maximum at
the origin, the bending moment will at first be maximum at 0, since the average pressure
P/(2l) and the constant inertia forces per unit of length are equal and opposite, and
the moment of the pressure p(z2) —P,/(2l) is maximum at 0 (Fig. 3). In this first phase
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of the motion the beam translates rigidly with a constant acceleration a in the y direc-
tion and, as p increases in magnitude, say linearly. there comes a moment when the
bending moment M at O reaches its capacity value 1/, . At this point a hinge is suddenly
developed at 0 and each half-beam acquires an angular acceleration —« on top of the
linear acceleration a. From this point on the moment of the rotational inertia forces
contributes to the bending moment, which may reach its capacity value at sections
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other than £ = 0. An analysis of this second phase of the motion, limited to the develop-
ment of additional lateral hinges or to the splitting of the central hinge, is contained in
what follows.

3. The concentration parameter. The type of load considered is distributed sym-
metrically about the origin according to the exponential law:

p() = p. % (I1+4+c)e” (0=z=1) (1)

where:
z = z/l (2)

and ¢ is a constant called the concentration parameter.
The total load on the beam due to the distribution (1) equals

1
P =p.l % 2f (1 4+ c)e” " dz
0

)]
= 2p¢l<1 —e " = %e")
and the pressure p. is se chosen to make P independent of ¢, so that
P/(21
p. = ——LA2 @

T1-e+e/2)

It is seen from Egs. (1) and (4) that as ¢ approaches zero p(z) approaches a uniform
distribution p, = P/(2l), while as ¢ approaches infinity p(z) becomes a concentrated
load P applied at x = 0. Figure 4 gives the graphs of p(z) for ¢ = 0, 2, 6 and 10.
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4. The rigid translation phase. The acceleration a of the beam in the y-direction,
before the bending moment reaches its capacity value at 0, is given by:

0= 2 = /mll = (1 + ¢/2)] ®)

The corresponding inertia forces —ma and the load p(z), per unit length, create a moment
M(0) at the origin evaluated by the rotational equilibrium.of a half-beam about 0
(Fig. 5):
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It is convenient to introduce a non-dimensional load parameter u defined by the equation

Pl
I‘_m) (7)

where P is given by Eq. (3) and M, is the plastic capacity moment of the beam. In
terms of x4 the moment M (0) becomes:

1 —3/c+e(2+c/2+3/)

MO = Mo T T+ o)

®

A central hinge develops and the rigid translation phase of the motion ends when M (0)
reaches the value M, , that is for the value u, of u defined by:

1 —e (1 +¢/2) .
1—3/c+e(2+c/2+ 3/

9

Ko = 4

It is seen from Eq. (9) that the value y, of ¢ at which the central hinge appears approaches
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4 as c¢ approaches infinity (concentrated load). As ¢ approaches zero p, becomes inde-
terminate, but expansion of ¢ ° into a power series gives the asymptotic value
48
po=5-8 (K] (10)
which approaches infinity as ¢ approaches zero. The graph of u, versus ¢ appears in
Fig. 6a.
p 5§ B
Vo 3
\
\
\\ .
T\
1000 -\
1 A
) | A
1
1
\ . N
DS
'a IS
153 \
00— \),
A ¥ —~
— A
\ ~—
\ -~ -
_\ S
\\
N\ 229
m \\\
/6 e ———
~--E
4.
/ —
o 2 4 6 8 0 2
Fr16. 6a.
5. The translational-rotational phase.

For values of x larger than u, the half-beams
translate with an acceleration a and rotate rigidly with an angular acceleration —e, so
that the acceleration of the section x = Iz of the beam becomes:

a(z) = a — alz.

(11
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The two unknown accelerations a and ol are determined by applying the equations of
dynamics in translation and rotation to the half-beam (Fig. 7):

P/2 — f " ma@) dz = 0 (12a)

1 1
M, + fo p(@)z dz — m_/; a(z)zdz = 0.

(12b)
By means of Egs. (11), (1) and (3) these equations reduce to:

ma — imal = p.[1 — e (1 + ¢/2)]

ima — imal = M,/ + 1p.[3/c — e (3 + 3/c + ¢)]
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and give the following values of ma and mal:

ma = —6M,/I> + p.[4 — 9/c + ¢ (5 + 9,c + ¢)] (13a)
mal = —12Mo/I* 4 p.[6 — 18/c + ¢~(12 + 18/c + 30)] (13b)
Yy
/ 4
T ay —ma(zl)
-ma
(i—, x
M,
p2)
Fia. 7.

By means of Egs. (1), (7), (11) and (13) the bending moment at any section z = Iz
becomes (calling u the dummy variable of integration)

M@ =2 [ ) — ma) - 2 du

= . M,
21 = e *(1 + ¢/2)]

{2[1 —e (1 +¢/2)](1 — 32 + 22

+ 5 {3/ — 2) — e + 3/9)
+2°[(4 — 9/¢c) +e (54 9/c + 0]
— 22— 6/c+ e (4 + 6/c + 0)]}}- (14)

A second hinge will develop in the beam as soon as M (z) has a stationary value at,
say z = z, # 0, and this stationary value equals the capacity moment M, in absolute
value. Since 3/ (2) is certainly maximum at z = 0, even after the hinge has developed
at 0, because of symmetry, the stationary value of M at 2, must be a minimum (Fig. 8)
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or M(z) would have a maximum larger than M, at another section. Hence the section
2, , at which a second hinge develops as u increases beyond g, to a value y, , is defined by

the conditions
M@ _ oM _
AMO - 1 62 - O’ (15)
which by means of Eq. (14) become:
201 — e ‘(1 +¢/2)12 — 328" + 22°) + u/2{(B/c — 22) — e (2 + 3¢ + 2*[(4 — 9/0)
+e5+9k+0]—72—6/c+e 4+ 67c+0)]} =0; (16a)
12[1 — e *(1 +¢/2)1E@ — 2) + p{—[1 — (1 + 3c2)] + 2[4 — 9/0)
4+ e (B5+9/+ 0] —38°[(1 —38/c) +e(2+ 3/c+¢/2)]} =0. (16b)
Solution of the simultaneous Eqs. (16a) and (16b) for various values of ¢ gives the
graphs of u, and 2, versus ¢ plotted in Figs. 6a and 6b, respectively. It may be shown
analytically that as ¢ approaches infinity p, approaches 22.9 and z, approaches 0.4;
while, as ¢ decreases, the second hinge moves outward and p, increases, approaching
infinity as ¢ approaches a value between 2.0 and 2.1.
6. The splitting of the central hinge. The values of 2z, and p, obtained above for

the development of a second hinge in the half-beam were predicated upon the fact that
M (z) would remain a maximum at z = 0. This is guaranteed by the equation

’*M
[ 622 ]:-0 < 0.

If instead, as u increases above p, , the second derivative of M becomes positive for
values of u such that

po < p < py, (17)

the moment M would become minimum at 0. Since this cannot happen lest M (z) be
greater than M, at another section, the central hinge splits into two symmetrical hinges
which wander outward plasticizing a central portion of the beam, in which the moment
has the constant value M, . The value u,,, of u at which the central hinge splits is there-

fore characterized by the condition
2
[a M] =0, (18)
z=0

92

that is, by the equation:
4—-9%¢c—c/24+eG+9c+)ut+6[—24+e°2+0]=0,

from which:
6¢c[2 — (2 + ¢)]
= 2 —c 2 * (19)
(=9 4+ 4c—c/2) +¢(9+ 5¢c+¢)

The graph of u,., versus ¢, plotted in Fig. 6a, has a minimum for ¢ = 2.2, approaches
infinity as ¢ approaches zero and 3.63, and crosses the graph of p, for ¢ = 3.45.

It is thus proved that lateral hinges will develop in the beam when g = g, while the
central hinge remains stationary if ¢ > 3.45. If instead ¢ < 3.45, the central hinge will
split, plasticizing a wider central portion of the beam, when u = u,,, , before lateral
hinges may appear.

Mo,



