
216 NOTES [Vol. XI, No. 2

PARALLEL REFLECTION OF LIGHT BY PLANE MIRRORS*

By JOSEPH B. KELLER {Institute for Mathematics and Mechanics, New York University)

1. Introduction. If three plane mirrors are mutually orthogonal then, as is well
known in geometrical optics, any ray1 incident on these mirrors in the octant which
they bound will be reflected once from each mirror and will emerge parallel to its original
direction. Similarly any ray incident on two orthogonal plane mirrors, in the quadrant
which they bound and in the plane perpendicular to them, will be reflected once from
each mirror and will emerge parallel to its original direction. It is interesting to investi-
gate whether there are other configurations of plane mirrors which also have this property
of parallel reflection.

For two mirrors, with the incident ray in the plane perpendicular to them, the answer
is easily found although it does not seem to be well known. It is this: if and only if the
mirrors meet at an angle x/n, where n is any even integer, every ray will emerge parallel
to its original direction. Furthermore every ray suffers n reflections; for example, two in
the case of orthogonal mirrors discussed above.

For three mirrors meeting at a point Synge2 has shown that if every ray is reflected
exactly once from each mirror every ray will emerge parallel to its original direction if
and only if the mirrors are mutually orthogonal. However, in view of our above result
for two mirrors, it is reasonable to drop the restriction that every ray be reflected exactly
once from each mirror. We then find that there are indeed other configurations of three
mirrors meeting at a point which yield parallel reflection for every incident ray. These are
the configurations in which the sets of dihedral angles are (x/2, x/3, x /4), (71-/2, 7r/3, x/5)
and (x/2, x/2, ir/n) where n is an even integer. The numbers of reflections suffered by
any ray are 9, 15 and n + 1 respectively. The case (ir/2, x/2, x/n) with n = 2 is the case
of mutually orthogonal mirrors, in which case each ray is reflected three times. Further-
more, these are the only configurations of three or more mirrors meeting at a point which
have the parallel reflection property.

In section II we formulate the problem, and in section III we deduce the result
described above.

2. Formulation. Suppose three planes meet at a single point and that one side of
each plane is designated as the reflecting side. Then one and only one of the eight regions
into which the planes divide space will be on the reflecting side of all three mirrors. Any
oriented straight line in this region which can be extended indefinitely in its negative
direction without intersecting a plane is called an incident ray1. If an incident ray inter-
sects a plane it is reflected according to the law of reflection; the reflected ray may be
again reflected, etc. If a reflected ray can be extended indefinitely in its positive direction

*Received June 2, 1952. This work was performed at Washington Square College of Arts and Science,
New York University and was supported in part by Contract No. AF-19(122)-42 with the U.S. Air Force
through sponsorship of Geophysics Research Division, Air Force Cambridge Research Center, Air Ma-
teriel Command.

'Rays which intersect an edge or vertex or are parallel to one or two mirrors are excluded. The latter
rays do emerge parallel to their original directions although they suffer only two or one reflections, re-
spectively, not being reflected from the mirrors to which they are parallel.

-J. L. Synge, Reflection in a Corner Formed by Three Plane Mirrors, Quarterly of Applied Math., 4,
166-176 (1946).
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without intersecting a plane, it is called a final reflected ray. The problem we consider
is that of finding all configurations of three planes meeting at a point with the property
that every final reflected ray is parallel to the incident ray from which it originates.

First, following Synge, we shall reformulate the problem in terms of reflection of
points on the surface of a sphere. To this end we construct a sphere with center at the
meeting point of the planes. The surface of the sphere intersects the planes in great
circles. The trihedral region on the reflecting sides of all three planes cuts out on the
sphere a spherical triangle T, which is bounded by the three great circles. We represent
a ray by the point of intersection, with the sphere, of a parallel infinite line through the
center. Since a straight line through the center intersects the sphere twice the more
negative of the two points is chosen. Thus all parallel rays with the same orientation are
represented by the same point, while antiparallel rays are represented by antipodal
points. It is clear that all incident rays, defined above, are represented by points in the
spherical triangle T.

Now suppose that a ray, represented by the point P, is reflected in a plane, represented
by the great circle A. Then the reflected ray is represented by a point P, which is obtained
by reflecting P in A. This can easily be seen if the point of reflection is transported to
the center of the sphere. The ray from P to the center is the incident ray; the ray from
Pi to the center is the negative extension of the reflected ray.

Since, by definition, only one side of each plane is reflecting a point P must lie on
the reflecting side of a great circle A in order to be reflectable in A. We will call a re-
flection of P in A admissible if P does lie on the reflecting side of A. The reflecting side
of A is the side or hemisphere containing the spherical triangle T, according to the
definition of T. Now a ray emerges, or is a final reflected ray in accordance with the
definition above, only when it is not reflectable in any plane. Thus a point P represents
a final reflected ray only if it lies on the non-reflecting side of each plane. But every
point which lies in all three hemispheres not containing T must lie in the spherical
Triangle T' antipodal to T. We can now formulate our problem as that of finding all
spherical triangles T with the property that every sequence of admissible reflections of
any point P in T leads to the antipodal point P' in T', since P' represents a final ray
parallel to the incident ray represented by P.

3. Solution. Let us suppose that T is a triangle with the desired property and that
Pi and P2 are two points in T. We first want to prove that if an admissible sequence of
reflections Ri carries Px into some point P, and an admissible sequence of reflections
jR2 carries P2 into the same point P, then P, and P2 are identical. In other words, no
two distinct points can have a common image under admissible sequences of reflections.
To prove this assertion we note that, by hypothesis, every sequence of admissible re-
flections of a point of T terminates on the antipodal point. Thus, in particular, the
sequence Ri which carries P, into P can be continued by a sequence of admissible re-
flections which we shall call so that Ri + Si carries Pt into P[ , the antipodal point.
But then Si carries P into P[ . Therefore R, + Si carries P2 through P into P[ . Since
this is an admissible sequence of reflections, it must by hypothesis terminate on P2 .
Therefore P' is identical with P2 and so Pi is identical with P2 .

Now let us consider the neighborhood of a vertex of T of vertex angle a. We wish to
consider successive reflections of a point of T in the two sides meeting at the vertex.
We introduce polar coordinates with the vertex as origin and one side as polar axis. If
$ is the polar angle the other side is given by <t> = a. If 0 = 6 is the angular coordinate
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of a point of T, its image after n successive reflections in the sides 0 and a will have the
coordinate <t>J,6) given by:

na + 8 n even
) = if the first reflection is in side 0,

— (n — l)a — 8 n odd

(n — l)a — 8 n odd
cbJd) = if the first reflection is in side a.

. . n even—na + 8

(1)

These reflections are admissible only until the image falls in the vertical angle x to x +
a (or — x to — x + a) since then the image is on the non-reflecting side of both mirrors
meeting at the vertex. [To prove the result stated previously for two mirrors, we set
<£„ = x + 0 or — x+0 and find a = ir/2 with n even.]

From the expressions in Eq. 1 it is not difficult to show that some image of every
point will lie in the vertical angle x to x + a. Let us consider the least value of n for
which the image of any point of the original angle lies in the vertical angle. The sequence
of admissible reflections which carries a particular point into the vertical angle in this
number of reflections is necessarily an admissible sequence for all points in the original
angle. Therefore the image of the original angular region under this sequence is another
angular region which overlaps the vertical angle. If this overlapping is complete, then
one may deduce, as above, that a = x/n where n is an odd or even integer. If the over-
lapping is incomplete the image covers an edge of the vertical angle. The points outside
this edge may then be reflected in it, and some of them will fall on already covered points.
Therefore distinct points of the original angle will have a common image, contradicting
the theorem above. Thus the overlapping must be complete and therefore, we conclude
that each vertical angle is of the form x/n, where n is an integer, not necessarily the same
for all vertices.

Combining this result with the fact that the sum of the interior angles of a spherical
triangle exceed x, we obtain the inequality.

- + - + -> t. (2)rii n2 n3 w

The only solutions of this inequality are:

U x x\ /t i (t X x\ /x x x\ , .
\2' 3' 3/' \2' 3' 4/' \2' 3' 5/' \2' 2' n/' W

Thus the only possible triangles having the desired property are included here since
these solutions were obtained by imposing necessary conditions.

By examining the admissible reflections of these triangles on a sphere, we find that
only the following actually do yield parallel reflection:

(x x x\ (t ir ir\ (it x x\ ...
2' 3' 4/' \2' 3' 5/' \2' 2' n)'n eVen' ^

The other triangles do map onto their antipodal triangles but with the sides interchanged;
in other words, a point does not land on its antipode but on the antipode of its image in
the principal altitude of the triangle. In the same process we find that the respective
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numbers of reflections are 9, 15 and n + 1. This completes the proof for the case of three
mirrors.

For more than three mirrors all the considerations preceding equation 2 are valid,
but the corresponding inequality has no integer solutions at all.

To prove only Synge's result, which is included above, a much simpler method
suffices. If a point arbitrarily near a vertex is reflected successively once in each of the
sides meeting there the image remains arbitrarily close to the vertex. The third reflection
must bring it to the antipode, an angular distance arbitrarily close to t radius. Thus
the angular distance from the vertex to the third side is arbitrarily near x/2, and this
applies to each side. Thus the triangle must be an octant of a sphere, which completes
the necessity proof. The sufficiency is proved by reflecting an octant three times in its
sides.

It is of interest to compare our results with those described on pps. 81-83 of Coxeter's
"Regular Polytopes" (Methuen, London, 1948). There the discrete groups of reflections
generated by three or more concurrent planes are deduced. It is first found that all the
dihedral angles must be of the form ir/n, then equation 2 is applied, and the solutions
are given by equation 3, with none for more than three planes. In the problem of discrete
groups all sequences of reflections are permitted, while in the present problem only
"admissible" sequences of reflections are permitted, which is a weaker condition. On
the other hand we have the condition that some admissible sequence must carry each
point into its antipode, and this condition is strong enough to limit the solutions to those
given in equation 4—a subset of the configurations generating discrete groups.

The new parallel reflecting configurations given herein may have practical value in
some applications because they reflect back only those rays which are incident from a
certain angular region, and the angular region may be made much smaller than that of
the mutually orthogonal mirrors.

I wish to express my indebtedness to my colleague, Prof. Wilhelm Magnus, who
supplied a crucial part of the necessity proof given above.

NOTE ON SELF-PROPAGATION OF TURBULENT SPOTS*
By CARL E. PEARSON (Harvard University)

Introduction. Emmons (1), (2) has recently directed attention towards the manner
in which transition occurs from a laminar to a turbulent boundary layer. It appears that
the dominating phenomenon is the spontaneous generation of a large number of tur-
bulent "spots" which grow rapidly and eventually coalesce. It has been observed ex-
perimentally that, except perhaps immediately after generation, each spot grows in
such a manner as to maintain geometric similarity. Because the spot is growing in a
boundary layer, the rate at which an elemental portion of its periphery propagates its
turbulence outwards is dependent on the orientation of that portion; this dependency
of propagation rate on orientation is necessarily associated with the shape of the spot.

It is the purpose of this note to prove the simple but interesting result that for either
of two reasonable speculative hypotheses concerning propagation rate, the shape of the
spot approaches a certain asymptotic shape which is independent of the initial spot
shape.
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