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WATER WAVES OVER A CHANNEL OF INFINITE DEPTH f
By

THOM R. GREENE (The General Electric Co., Schenectady, N. Y.)
and ALBERT E. HEINS (Carnegie Institute of Technology)

I. Introduction. This is a continuation of some work on gravity waves in channels
of finite depth with special types of obstacles (1), (2), (3). Thus far three cases have
been considered: the channel of finite depth with (i) a dock; (ii) a submerged plane
barrier and (iii) the joining of two free surfaces. In this paper and one to follow we propose
to discuss the corresponding problems for channels of infinite depth. The problem which
concerns us here is case (ii) and its limiting case (i) for such channels.

The physical background for the problem has been discussed in (1) and (4). Here we
shall reformulate the problem so that the notion of infinite depth is admitted. As we
have done in the past, only propagating regions will be considered here, the possibility
of non-propagating regions may be treated in a fashion similar to that of the propagating
region. It will be assumed that the waves have propagation normals which are not
perpendicular to the edge of the barrier and in the beginning we shall assume that the
barrier is submerged (2). As limiting cases, we will get the case of normal incidence and
the "dock problem."

While there is a certain parallelism between the formulation of the problem in channels
of infinite and finite depth, we observe that the mathematical methods of solution become
more subtle in the channels of infinite depth. Still, we provide here methods which will
solve the problem we have described. With minor modifications in method but definite
changes in formulation, we can solve (iii) for infinite channels.

II. Fundamental Equations of Motion and Statement of Problem. If we use the linear-
ized equations of motion as we have done in the past, we have for an incompressible,
non-viscous fluid, in irrotational motion that

<t>'xx + = 0

where 4>' is the velocity potential. On a rigid surface <f>'n = 0, while on a "free surface"

g<t> n + <t>'n — 0.

Assuming monchromatic time dependence

<t>' = 4>{x, y, z) exp (-iut)

and these conditions become <j>„ = 0 and g<t>„ = a>2<j> respectively.
Here we are concerned with a channel of infinite depth with a semi-infinite plane

barrier submerged a units below the undisturbed free surface (See Figure 1). We shall
assume that wave motion exists for | x | —»°=>, y = 0 where the propagation normal is
parallel to the free surface but not at right angles to the edge of the barrier, that is the
z axis. As such there will be a 2 variation exp (ikz) (k > 0) in <p which we may suppress
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Fig. 1.

from the beginning. This gives us as fundamental equations of motion

<t>x.r + <£„„ — k'<f> = 0 in the fluid medium, (2.1)

<t>„ = 0 on a rigid surface, and (2.1')

(j>„ = /3(j) P — u~/fi on a free surface. (2.1")

Equation (2.1) possesses the following types of bounded solutions. For x —*<*> ,y < a

<t> = exp [ikz + Py ± i\p2 — li1 J 1/2x]

while for a; —> — °°, 0 < y < a

exp (ikz ± iicx) cosh a0y/a

where

k = {(a„/a)2 - k2}w2

and

a sinh a = (ia cosh a (2.2)

has the smallest real roots =fc a0 . Eq. (2.2) also has an infinite sequence of imaginary
roots ian, a_„ = —a„,n= 1,2, ■ • • . Wave motion exists if 0 > k and | a0/a | > k.

III. Derivation of the Integral Equation. Following methods which have been dis-
cussed elsewhere (1), (2), (3), it is a fairly straightforward task to formulate the integral
equation which describes the boundary value problem considered in Sec. II. In view of
the fact that we have suppressed the z dependence in 4>, we have essentially a two dimen-
sional problem. We shall divide the half space y < a into two regions: (a) the strip 0 <
y < a, —00 < x < c° which we shall henceforth refer to as Rx and (6) the half plane
y < 0, — co < x < co which we shall refer to as li2 . Since we require the use of the
Helmholtz theorem in its improper form to provide representations of <j>(x, y) in A\ and
R2 in terms of 4>y(x, 0), some statements regarding the growth of <f> as r —»co will be in
order (r = [a;2 + i/2]172). To begin with, in for x —> co; 0(.r. y) is asymptotic to

[7, exp (ikx) + 72 exp (— ux)] cosh a„y/a. (3.1)

This is tantamount to the statement that the asymptotic form of <f> for x —is the
bounded solution which would have been obtained had the barrier extended to infinity
on the right. For x —> °° and y < a, we specify the asymptotic form of 0 as

[73 exp (tax) + 74 exp (— iax)] exp (fiy) (3.2)
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where a = {/S2 — k2}1/2 and the positive root is to be understood. This again is a state-
ment that for a channel of infinite depth without a barrier (3.2) is the bounded solution.
One final task remains and that is to specify the nature of 0 as r —><*>, x < 0 and y < 0.
In this we are not as fortunate as we were in the other two cases. We shall assume (and
verify with the solution of the problem) that <j> = 0 [exp (fcj ?•)] for y < 0, x < 0, r —>co
where /:, < k. This condition will enable us to write a representation for 0 in Ii2 , that is
for y < 0. One final assumption is required and that is the statement that <f> and are
integrable for all finite x — again subject to final verification.

If we introduce a Green's function Gu> (x, y, x', y') associated with Eq. (2.1) and
which satisfies the boundary conditions

G™ = 0G(1) y = a, - ™ < x < <* (3.3)
and

G[l) = 0 y = 0, —oo < x < oo (3.3')

and the further conditions at infinity that G(1) —> 0 for x' — x —>oo while for x — x' —><»

£(1) _ 4a„ cosh a„y/a cosh a0y'/a sin k(x — x')
aK(2a0 + sinh 2a,)

0

we have as a representation for 4> in Ri

0(x, y) = [cosh aQy/a][yi exp (ux) + y2 exp (— ikx)}

- [ Gtl\x, y, x', 0)tfv(a;', 0) dx'. (3.4)
J 0

Here (3)

.o(i>, , 2a„(cos a„y/a)(cos any'/a) exp [— | x — x' \ {k2 + a'/a2}'/2]
{X'y' X ' V' a(2a„ + sin 2an) {a2„/a2 + fc2}1/2

+ 0 if x' > x or

4a0(cosh a0y/a)(cosh a0y'/a) sin k(x' — x) ,
a<c(2a0 + sinh 2a0) 1 %

For the region R2 we have in a similar fashion

<t>(x, y) = [ Gm(x, y, x', O)0„.(x', 0) dx' (3.5)
J 0

where

G«\x, y, x', y') = ~ [K0{k{{x - x')2 + (y - y')2}1")

+ Ka(k{(x - x')2 + (y + y'YY'2)].

The function K0(5) is the solution of the differential equation

yss + ys/8 - y = 0

which is 0(log S), d —> 0+. It is a Bessel function of the second kind which possesses the
property that it is of the order exp(— S)/81/2 for 5 —>oo. This last order condition ac-
counts for the choice of the constant ki . On the basis of these two representations of
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<j>(x, y) in Ri and R2 we can form an integral equation of the Wiener-Hopf type. We note
that <t>(x, y) is continuous at y = 0 for all x > 0. We have then for x > 0

71 exp (ikx) + 72 exp (—ux)

- [ [Gw(x, 0, x', 0) + Gw(x, 0, x', 0)]<t>Ax', 0) dx' = 0. (3.6)
J 0

IV. The Fourier Transform of the Integral Equation. We now define Eq. (3.6) to read
for all x

I(x) = J(.r) - J lGm(x, 0, x', 0) + Gw(x, 0, x', 0)]L(x') dx'. (4.1)

Here

l(x) = 0 for x > 0

J(x) = 7, exp (ux) + 72 exp (— ikx) x > 0

= 0 x < 0

L(x) = 0 x < 0

= <t>, (x) x > 0

Clearly then I(x) = 0 [exp(fcr)] for x —and L(x) = 0 [expkxx\ forx —>°o. Actually
L(x) is bounded for x —being of the form exp(± iax) but this last description of
4>(x, 0) for x —»<» need not be stated explicitly.

Let us now introduce the Fourier transforms of I{x), ,J (x) and L(x) as well as those
of GU) (x, 0, 0, 0) and G<2) (x, 0, 0, 0). Henceforth we shall use the notation I(w) to
denote the Fourier transform of I(x), J(w) for J(x), etc. We have from Eq. (4.1)

7<w> = i(^ + i^T+T) - ^^"0 + (4-2>

where

G"'(w) = f exp (—iwx)G")(x, y, 0, y') dx
J _co

cosh sinh p(t — a) + p cosh p(t — a)]
p[p sinh pa — 0 cosh pa]

and (s, t) — (y, y') if y < y' or (y', y) if y > y'. Furthermore

Gm(w) = [ exp ( — iwx)Gm(x, y, 0, y') dx
J _co

= {exp [-p | y - y' |] + exp [-p \ y + y' |]}/2p.

where p = {A;2 + w2\I/2. The branch of p has been chosen which reduces to k when w
= 0.

We now examine the regions of regularity of the various transforms. First I(w) is
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regular in the upper half plane v > — k (w = u + iv), J (w) is regular in the lower half
plane v < 0, and L(w) in the lower half plane v < — kx . This follows from the assumed
integrability for finite x of Kx), L(x') and J(x) as well as their growths for | x | —
Similarly (?"' (w) is regular in the strip — {k2 + aj/a2}1/2 < v < 0 while G<2> (w) is
regular in the strip — k < v < k. There is then a common strip of analyticity for all of
these transforms, the application of the Fourier transform to Eq. (3.4) is permissible
and we obtain Eq. (4.2). Upon simplifying we get

l{w) = , 71 > + ,,/X \ - K{w)L{w) (4.3)
l(W — K) l{W -f- K)

where

K(w) = [1 — /3/'p][exp ap][p sinh pa — 13 cosh pa].

Following Wiener and Ilopf (5), Eq. (4.3) may be rewritten

T , x,, \ K+{w) — K ,(k) K+(w) — K(-k)A +(w)I(w) - 7!  .7 r 72  y—"j—C 
i(w — k) l(w + K)

= isr^j+ S+5! - (iA)
where K. (w) is regular in the upper half plane v > — k while K-(w) is regular in the lower
half plane v < 0. Eq. (4.4), as a result of an argument of analytic continuation described
by Wiener and Hopf, implies that each side if individually an entire function. Our next
goal is to determine the explicit forms of K-(w) and K+(w) as well as the entire function
of separation.

V. The Determination of KJw) and K+(w). Thus far we have pursued a familiar
course to arrive at Eq. (4.4). From this point on we encounter a number of unfamiliar
situations. In the decomposition of K(w) we have three individual components to con-
sider:

(a) p sinh pa — p cosh pa

(b) exp (pa)

(c) 1 - f}/p
Component (a) is familiar and has been discussed in (2). The type of factoring we employ
implies that the portion of (a) which is regular in some lower half plane also has a regular
reciprocal in the same half plane. The same remark may be addressed to the upper half
plane factor. We have then

p sinh pa — 0 cosh pa = M+(w)/M-(w)

where M+(w) is regular in the upper half plane v > — a, 11 + a2k2/a\ j1/2 and M-(w)
is regular in the lower half plane v < 0. Here

M+(w) = FI [{1 + a*k\/al\u* — iaw/am] exp (iaw/rmr)

and

1 /M-(w) = fl [{1 + a'k2/al\w' + iaw/am\ exp ( — iaw/rmr) ~r (w2 — k ).
ra-l <*0
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For

| w | —> co Imw > — {a2 + a2k2 j1/2

M+(w) = 0[wT(—iaw/ir) exp (—yiaw/ir)]~l

where 7 is the Euler-Mascheroni constant, while for | w | —> a>, Imw < 0

M-(w) = 0[exp (-{-iawy/Tr)T(iaw/Tr)w~'}.

Now we turn to (b). The decomposition of exp (pa) multiplicatively is equivalent to
the decomposition of additively. p = {w2 + k2\1/2 is regular in the entire w plane pro-
vided cuts are introduced along the imaginary axis from k to infinity and — k to negative
infinity. We define

\w2 + k2\U2 = | w2 + k2 |1/2 [exp {?'/2 arg (w — ik) + i/2 arg (w + ik)} ]

where

— 3ir/2 < arg (w — ik) < -k/2

—7t/2 < arg (w + ik) < St/2.

With these definitions at hand we turn to the decomposition of 1/p from which we can
readily obtain that of p. From Cauchy's theorem we have

2«/(u>2 + k2)1'2 = [ dz,'(z - w)(z2 + k2)'/2 (5.1)
J c

where C is a closed rectangular path in the strip — k < Im z < k whose vertical con-
tributions disappear as they recede to infinity. The upper side of the rectangle may be
deformed into a path along the branch cut from k to infinity, while the lower one goes
into a path over the lower cut and we get

iri/iw2 + A'2)1/2 = f dy/(w - iy)(y2 - k2)1/2 - f dy/(w + iy){y2 - k2)u\
J k J k

This provides a separation of the required type—the first term being regular in the lower
half plane v < k, the second in the upper half plane v > — k. For our purposes, however,
we require more explicit information, particularly as to the nature of these integrals as
| w | —> co and we therefore proceed with the evaluation of these integrals.

As a matter of notation we write

«(w2 + fc2)",/2 = f(w) +f(-w)

where

f(w) = f dy/(w - iy)(y2 - k2)U2 = (w2 + k2)'"2 log [(1 + 0/(1 - t)] (5.2)
J k

and

t = (w + ik)W2(w - ikYU2. (5.3)

Upon using the definitions of the arg(w + ik) and arg(u> — ik) which we wrote above,
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we find that the cut w plane (Figure 2) maps into the upper half of the t plane by means
of (5.3). Further the transformation z = (1 + 0/(1 — t) is bilinear and hence maps the
upper half plane Imt > 0 into the upper half plane Imz > 0 (Figure 2). We therefore
define the branch of the logarithm by 0 < arg z < ir. Given this information, we may
verify that f(w) is regular in the lower half plane v < k. The factor (w2 + k2)~'/2 multi-
plying the logarithm in f(w) changes sign as we cross the lower branch cut. But the

[W

fM

I
-ik

T
I
ik

—,♦—

T
«*-4  3

Fig. 2.

arg z = 0 on this cut so that the real part of /(w) is continuous. In crossing the branch
cut log | z | becomes — log | z | so that the imaginary part of /(w) is continuous. Hence
f(w) is regular in the required lower half plane. On the upper branch out the arg z — x
and hence the sign of the radical multiplier introduces a discontinuity.

Similar comments apply to the function — The transformation t' = (w — ik)1'2-
(w + ik)~1/2 sends the cut plane into the half plane Imt' < 0 and the transformation
z' — (1 — t') (1 + t'y1 takes the half plane Imt' < 0 into the upper half plane Imz' > 0
with the upper branch cut mapped into the positive z' axis. We put 0 < arg z' < ir to
define the branch of the logarithm in that is

fi-w) = (w2 + k2yi/2 log (i - o(i + r1

and we find that f(—w) is now regular in the upper half plane v > — k.
As a check, we have in the strip — k < v < k

fM + /( — «>) = (w2 + &2r1/2[log z + logs']

= (w2 + fc2)-1/2[log | zz' | + i argz + i argz'].
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Since z — — 1/z', this last expression reduces to the one with which we started. Hence if
we write exp [a(w2 + k2)1'2] in product form as we have already described, we find that

exp [a(tt2 + kyn] = N./N+
where

JV_(w) = exp [a(w2 + k2)f(w)/iri]

1 /N+(w) = exp [a(w2 + k2)f( — w)/iri].

The asymptotic forms of / (w) and /(—w) will be required at a later point in our
work and since the analytical machinery is now developed, we shall provide these forms.
Note first that

log (1 + 0(1 - t)'1 = log \i[w + (w2 + k2)W2]/k}.

Further for u > 0, v < — k, — ir/2 < arg (w2 + k2)1/2 < 0 and — r/2 < arg w < 0.
Hence for | w \ —> oo, v < — k, u > 0,

log [i[w + (w2 + k2)1/2]/k\ = log [(2iw/k) + (ik/2w)]

up to terms of 0(l/u>). This in turn has the expansion

(log 2iw/k) — k2/4w2. (5.4)

Now the choice of the definition of the logarithm is dictated by the fact that the argument
of the logarithm in (5.4) lies between the limits 0 and t. Hence if we consider the principal
branch of the logarithm of w we see that log i = itr/2 and hence

log (1 + 0(1 — 0"' — ?7r/2 + log 2/k + log w + 0(l/u>2) (5.4')
in this quadrant. If Ave now turn to the third quadrant, we see that we get certain minor
changes but the same dominant term. In this quadrant 0 < arg(«>2 + k2)l/2 < x/2
while — 7r < arg w < — 7r/2. Then

log (l + <)(i - r1 = log [i\w + (u-2 + k2y/2\/k]

- —log 2iw/k + 0(1 /w2)

for u < 0, v < — k, | w | —> <*>. But again the logarithmic term has an argument between
0 and 7r and since the arg w lies between — ir and — ir/2, the negative of this argument
lies between ir/2 and tt. Hence as we might have surmised

log (1 + 0(1 ~ 0_I = -»*■/2 — log w — log 2/k + 0(l/w2)
for \ w \ —, v < -\- k, u < 0. This change in the asymptotic form of the logarithm of
log(l + 0 (1 ~~ 0~' the third quadrant does not change the dominant term in the
asymptotic form of f(w) however and (5.4') is still in force. Similarly

/(— w) = —[log w + log 2/k — iir/2 + 0(I/w2)]/io

for | w | ->«>, v > — k. From this we conclude that

N-(w) = exp [aw/2 + {aw/m)(\og 2/k) + (aw/iri) log w]

if we retain the non-vanishing terms for | w \ —> oo t v < + k, while

1 /N+(w) = exp [(—aw/2) — {aw/iri){\og 2/k) — (aw/iri)(log w)]

for I w | —>oo; v > — k.
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The factoring of 1 — fi/(w2 + k2)l/2 into the product of two terms, one of which is
regular in the lower half plane v < 0, while the other of which is regular in the upper
half plane v > — k is guaranteed by the original work of Wiener and Hopf. However,
rather than apply their original methods, we shall follow an approach which will enable
us to express the factors in terms of f(w) and / (—it?). Again following the lead from
the form (b), we write

1 - &/{w2 + k2),/2 = exp [In 11 - (3/(w2 + k2)W2}]

where we choose the branch of (w2 + k2)1'2 which reduces to k for w = 0 as well as the
principal branch of the logarithm. Instead of decomposing the logarithmic factor ad-
ditively, we shall decompose its derivative in this fashion since differentiation will not
alter the open strip of regularity. Hence we shall examine first

-£ In [1 - fi/iw2 + k2)U2] = w0/(w2 + fc2)[{u;2 + A-2|1/2 - 0]

 1 1 , W w  w\w2 + fc2}'/2 , ,
2(w — ik) 2(w -f ik) w2 — a2 ${w2 + /3{w2 — a2}

Now of these five terms, we can state the following. The first and third are regular in
the lower half plane v < 0, while the second is regular in the upper half plane v > — k.
The fourth and fifth terms are regular only in the strips — k < v < k and — k < v < 0
respectively. The fourth term however is the derivative of — (w2 + k2)I/2/fi which has
been discussed in (6). The fifth term may be decomposed as follows:

w\w2 + fc2j'/2 = \w2 + fc2}1/2 / 1 1

P{w2 — cr~} 2/3 \w + (J w — cJ

We know how to decompose (w2 + k2)1/2 additively so that this last term breaks up
into four terms, two of which are regular in the lower half plane v < 0, while the other
two are still regular in the strip — k < v < 0. But the simple poles in these last terms
may be extracted quite readily so that we finally have that the portion of (5.5) which
is regular in the appropriate lower half plane is

U-(w) = — —~ ttz H 2——2 (w2 + k2)f(w)2{w — ik) w — a ir(h dw

(w2 + k2)f(w) (w2 + k2)f(w)
2/3iri(w + a) 2/3iri(w — a)

■ /3/(+«r) i M(-°)
2iri(w + a) 2iri(w — cr)

On the other hand, the term

+ 2^r+7) I'"* + ~ «<+*>'
1 r/ 2

' 2(3iri{w — a) [(W2 + k2)f(-w) - (32f(-c)}
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is regular in the appropriate upper half plane. Hence
r- 1

U+(w) dwP/p = j^cxp f U-(w) rfw][exp J
where the first factor is regular in the appropriate lower half plane while the second is
regular in the appropriate upper half plane. The constants of integration are chosen so
that the left side matches the light side in the strip of regularity.

The asymptotic forms of exp JU-(w)dw and exp J'" U+ (w)dw are readily determined
from our results in (b). We have for | w | —»<», v < 0

U-(w) = l/w + 0(1/if2)
while

l\(w) = —l/w + 0(1/w2)
for I w I —* v > — k. Hence

r exp C - («.•) dw = cw

and

exp l\(te) dw = cx/wr
in these respective cases where the constants ct and c satisfy the relation cr, = 1. The
precise values of the constants do not concern us here.

Now we may put together the factors (a), (b) and (c) to determine I\-(w). In order
to obtain an entire function of separation which is of algebraic growth, we introduce
into A'_(w) a factor exp x(w) where x(w) is to be chosen to make K-(w) of algebraic
order for v < A, , | w | —><». This process has already been described elsewhere (1). We
have then, for v < k, , | w I -,co

K-(w) = 0(ic~' ~) exp [(taw/ir)(y — 1 + In ak/2-ir) -f- x(w)].
From this we see that if x(w) is chosen as

x{w) = [1 — 7 — In (ak/2ir)](iaw/ir)
K-(w) = 0(wT1/2) in this lower half plane. Upon examining K+(w) for | w j—>co; v > — k
we find that K+(w) = 0(u,+l/2). Hence the factoring of K(w) and the asymptotic forms
of the factors are known explicitly.

In order to determine E(w), the entire function of separation, we merely apply an
extended form of Liouville's theorem. For example, for | w | —»<», v < 0, E(w) —
0(w~1), while for | w \ —> , v > — k, E(w) = 0(w1/2) as we can readily see from Eq. (4.4).
From this we see that since E(w) is a polynomial, E(w) is identically zero.

Earlier in our work we had assumed that <t>„(x, 0) was integrable from x = 0 to any
finite x. In view of the fact that I(w) = 0(w~1) and J(w) = 0(wT1/2) for | w | —><», v
suitable limited, we see that I(x) is bounded for x —> 0~, while 0„(x, 0) = 0(aT1/2) for
x —> 0+, thus verifying the integrability for finite x for these functions. The precise forms
of 4> will be investigated in the next section.

VI. The Determination of <t>{x,y). In order to determine 4>(x,y) we return to the
Helmholtz representations for <f> in R, and R2 ■ For Ri we have from (3.5)

<t>{x, y) = [cosh any/a\\yi exp (inx) + y-2 exp ( — inx)]

~ j" G's)(w, y, 0)L(w) exp (iwx) dw. (6.1)
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Here G'1' (w, y, 0) is the bilateral Fourier transform of G"' (x, y, 0, 0) an analytic func-
tion of w in the strip — \k2 + an/a\U2 < v < 0. The convolution is justified here since
L(w) is the transform of L(x) exp(ra) which is L(— <*>, oo) for — k < v < 0 and 0 < y
< a (6). The path C is drawn in the strip of analyticity — k < v < 0 and the evaluation
of the integral depends on whether x <= 0. If x < 0, we close below by a sequence of semi-
circular arcs passing between the poles of G'A) (u\ y, 0) on the negative imaginary axis.
In this case the integral becomes

__1_ I" YiK+(k) y2K+(— k)~1J~p cosh p(y - a) + flsinh p(y — a)"lexp (iwx) die
2tt Jc Lt(w — k) i(w + k) JL K~{w)[p sinh pa — /3 cosh pa] J p

-s[ 7iK + (k) , 72K,(—k)
(-iwn — k) (k — iw„)_

exp (w„x)(pl + a2ff2) exp (w„x)
iK _(—w„)aw„(a/3 — a2/32 — a2)

where wn = j al/a2 + A'2}1/2. The closing of the path C in the manner described above
is permitted since the integrand is 0 [w'3/2 exp(— r.r)] for j w | —v < 0.

For x > 0, the path C in Eq. (6.1) is closed above. The singularities in the upper half
plane are a branch point at w — ik and four poles at iv = ± a and ± x. We introduce
the positive imaginary axis from ik to i <» as a branch cut. The phase of p has already
been discussed on this cut, so the closing of C implies quarter circles on each side of the
branch cut as well as integrals along the branch cut. This then supplies us with a path
along which the integrand is single valued and analytic and Cauchy's theorem may be
applied for the evaluation of the integral. When we do so we get the residues at the poles
± a and ± k and an integral along the branch cut. To do this we replace

K , v = exp (ap)(l - 0/p)K+(w)
p sinh pa — $ Cosh pa

and the integral along C becomes

1 r rllKAA + , cosh pfe - a) + tonh »(„ - a)1 ^
2ir Jc Li{w — k) t(w + k) JL (exp ap)(p — /3)K+(w) J

The contributions from the quarter circles drop out as their radii becomes infinite and
we are left with an integral along the cut as well as four residues. On the right side of the
cut arg = 7r/ 2 while on the left side of the cut arg p = — t/2. Hence

/ + / = ^ residues
J C J br.

or

/ = — [cosh a02//«]["Vi exp (inx) + y2 exp (—inx)]
J c

+

7iK+(k) 72g+(-*)~j ft2 exp 0(y - 2a) exp (iax)
<J — K <T -)- K J aK+(o)

[" 7iK+(k) 72K+(-k)~\ 132 exp 18(y - 2a) exp (-ix)
L — (cr + k) k — <j J (tK+(o)

7T Jk L(W — K) (ly + «) JL
[~^ cos Ta -\- T sin Ta~\ ^
L exp (vx) J

T cos T(y — a) + j8 sin T(y — a)
Kt(iv)(v2 + cr2)

where T = (v2 — fc2)1/2.
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Now we examine 4>{x, y) in R2 . Here we use the representation

<K*, y) - —f Gw(x, y, x', 0)4v(x', 0) dx
J 0,

 1_ f exp (iwx) exp (py)L(w) dw
2t J c P

f 40HL exp (iwx -f- py)
Jc pKJ

7iK ■ (K) y ,l\ ( —k)
_(w — k) {w + k)2ir JpK-(w)

and again we distinguish the two cases, that is x ^ 0. For x < 0, the only singularity in
the lower half plane is the branch point at w = — ik. Hence we introduce a branch cut
along the imaginary axis from — ik to — i oo and choose a closing path of the variety
we have just described for 0 < y < a, x > 0. Upon doing this we find that for y < 0.
x < 0

,, , i r exp (dx)
4>{x, y) = >iiV- 7 f~x7T k 1 h-A—vo)

71 A* ,(k) 7.,K A —k)
_{—iv — k) ( — iv + k)_

cos Tydv.

For y < 0, x > 0, we close above in a fashion similar to the case x < 0, y < 0 to obtain
a function <j>(x, y) which has the same functional form as we did for the region x > 0,
0 < y < a. This incidently establishes the continuity of 4>(x, y) for x > 0, y = 0.

VII. Remarks. We have now formulae for the region x < 0, 0 < y < a, for x > 0, and
for x < 0, y < 0. For each of these expressions the integral or infinite sum, as the case
may be, is uniformly and absolutely convergent. Due to the presence of the favoring
exponential when x ^ 0, we may carry differentiation under the integral sign (or inside
the summation). It is possible, therefore, to verify directly that the Eq. (2.1) and the
boundary conditions (2.1'), (2.1") appropriate to the region are satisfied. For x < 0,
0 < y < a, we note that the expansion coefficients in the series are 0(»~3/2) for n —»<».
In view of the fact that we have decaying exponentials in this sum, it is clear that the
asymptotic requirements of the region are met.

Consider the integral in the representation for <j> when x > 0. We write its integrand
as [exp vx] [h(y, i>)]. Now h(y, v) is non-singular in (— <o, — k) and 0(iT3/2) independent
of y as v —>— oo. It follows e" and h(y, v) are L2(— °o, — k) integrable and we have
by Schwarz's inequity

[ e"h(y, v) dv < f e2" dv [ \ h(y, v) |2 dv
J-k J-k ' J

< A
i.*] 0 as x —> <» independently of y.

This shows the asymptotic requirements far to the right of the barrier are met.
The Riemann-Lebesque lemma shows the integral in the representations for </> when

x < 0 or when x > 0 goes to zero as y becomes negatively infinite. Since this is true of
the exponential terms in the case x > 0, we see that <f> decays with depth. Clearly then,
all of the order conditions we have had to assume in the formulation of the representa-
tions of <t>(x, y) for R, and R2 are satisfied.

VIII. Reflection and Transmission Coeffcients. From the results which we derived in
Sec. VI, we may supply the refection and transmission coefficients of the traveling
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surface waves for y — a, x ^ 0. We note that for x —> °°

</>(*, y) = [73 exp (itrx) + 7, exp ( i(jx) j exp (0y)

and this in turn is equal to

£ mmr %S esp
L cr — * a ~t k J a A A a)

P % - s
A*. ( — <r)

C 71 A . ( *) 72A'+(-k)"| 02 exp 0(j/ - 2a) , ,
+ v —c H  ,.- 7—V— exP (~laX) ■L — (0 + k) k — a J a u ' 1

From this we have then

I~7,A\(k) 7*A\(-k)1 P* exp (-20a)
7a = — 1 T  JFT~\— (8-[)|_ <7 k <r+K_|cr A+(tr)

and

74 = -1 1 t -tv ~:r- (8.2)_ _ j"7iA%(k) 7oA\(- k) 1 /32 exp (- 20a)
L 0 + k a — K J tr A% (— tr)

That is, we have two linear relations between the amplitudes of the traveling waves in
the regions x > 0 and x < 0, y = a. The conditions (8.1) and (8.2) are independent as
one can readily see by evaluating the determinant of the system (8.1) and (8.2).

As usual we have a relation between the magnitudes of 7, , yt , y3 and 74 . We form
the integral

/
(<W>* - 4>*4>„) ds' (8.3)

which is equal to zero since <f> is source free and sufficiently regular. This integral is
evaluated over the "boundary" of the channel with due recognition for the barrier. In
view of the particular asymptotic forms we have found for 4> for | x | —>«>, v —*— 00
(8.3) reduces to

I 7a |2 ~ | 7< I' = [j 7i I2 - I 72 I2]

ffcuOSa - ffV + Qo)[exp (-2j3a)][l + exp (-2a0)]
2<ra2„(a„ - a/3) '

The expressions we have found for 73 and 74 satisfy this relation. On the basis of (8.4)
we can define the reflection coefficients and transmission coefficients. Note that if 74 = 0,
we have transmission to the right and reflection to the left. | 72 | = | 72/71 | is the magni-
tude of the left reflection coefficient. Then

1?
7i

2<Tal(a0 — aft) exp (2a0)
0aK(0a — /32a2 + ajj)[l + exp (— 2a0) ]

defines the transmission coefficient to the right, that is | tK |. We find in this case

"- (ttJ'
|2 _ 4 (TKlR I — (<r + *r
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Similarly | rR | = | rL\ and \ tL \ — \tR\ , that is for the case in which y2 = 0. Note that
for the case k = 0

i"i"- I'-i'-fefJ-
i tL i2 = | tR r = (afi + an)~

Had we only been interested in magnitudes of reflection and transmission coefficients,
these results might have been anticipated from classical transmission line theory. How-
ever, the determination of the various reflection and transmission coefficients involves
a phase for each of these coefficients. These angles may be calculated from K+(ir),
K+ (-—«), K+ (a) and K+ (— <x) but we shall not pursue this point here.
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