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THE EFFECT OF COALESCENCE IN CERTAIN COLLISION PROCESSES*
By Z. ALEXANDER MELZAK (McGill University)

This note is concerned with the variable size-distributions of atmospheric and colloidal
particles. The following physical model is adopted: a large number of particles arc
randomly distributed in space; these particles are in random motion due to e.g. Brownian
effect or turbulence; the system of particles is given by the particle-mass distribution.
The distribution varies as a result of collision processes in which the randomly moving
particles meet and coalesce. The particles do not break up and do not enter or leave the
system under consideration. It is assumed that the total number of particles is large
enough to justify the use of

(a) the mass density function f(z, ); f(z, {)dz being the average number per unit
volume of particles of mass (or volume) z to x + dx at time ¢,
(b) the coalescence function ¢(u, v), where

N, v, O) = fu, )f@, )e(u, v) du dv di, 1
N(u, v, ) being the average number, per unit volume, of collisions resulting
in coalescence, between particles of mass u to u + du and v to v 4 dv respectively,
in the time interval ¢ to ¢ + dt.

The function ¢(u, v) takes care of such factors as: the collision cross-section, the mobility
of the particles, the fraction of collisions resulting in coalescence and any shape factor
affecting the collision. With these definitions, the condition for the conservation of mass
becomes:
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at Yuto=z du=0
This means that the increase of the number of particles of mass z in time d¢ is equal to
half the number of coalescences between particles of masses u, and z — u», 0 < u < 7,
minus the number of coalescences between the particles of mass z and any others. Sub-
stituting equation (1) in equation (2) gives the fundamental equation of the process:
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If N(f) is the total number of particles (per unit volume) then:

NGO = [ 1, b dx, "
d_;\/—l(g = _"]2' /0 _[0 fx, 0f(y. D¢(x, ) dx dy. (5)

The initial condition will be taken as f(x, 0) = g¢(xr), a known function corresponding
to a known initial distribution. If this initial distribution is nearly homogeneous, and if
¢(x, ) does not oscillate rapidly, then for small ¢ equation (5) may be approximated by:
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This may be regarded as a theoretical foundation of an empirical coagulation law valid
for some cases of Brownian motion. Whytlaw-Grey (1932) and Sinclair (1950) discuss
the range and validity of equation (6) in more detail.

Of course, equation (6) holds exactly if ¢(z, y) = c. In this case, one can solve the
main equation (3) under general initial conditions. Letting 2F(z, t) = cf(x, ), equation
(3) becomes:

oF ,t
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One introduces the Laplace Transforms:
Vo, ) = [ @ 0 dn e, 0) =5 [ e dr. ®)
Jo 2 [\

Then, using the standard properties of the Laplace Transforms, one obtains from equu-
tion (7) the equation for y(p, 1):

3
WD _ g, i — 290, D90, 0; ¥, ) known. (©)
Its solution is:
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Now, inverting equation (8), one obtains the final solution:
2 Lo € ¥(p, 0)
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v > 0 and sufficiently large.
(From equation (11), one may obtain as a particular case a solution of equation (3)
given by Schumann (1940), valid for a specific initial distribution only.) The conditions
under which the above use of the Laplace Transform is justified are not discussed here,
but it is easy to see from the physical situation that they are satisfied.

A few particular results for initial distributions which may be of interest have been
worked out. Two of them follow.

If f(x,0) = g(x) = 4 é(z — 1),
then
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From equation (12) it follows, as is otherwise clear, that starting with single particles
of equal size one will later have double, triple, m-tuple aggregates. The number of
m-tuples per unit volume at time ¢ is vy (£)e ™*‘*.

If g(x) = f(z,0) = A 2" ¢”°%, n integer,

then
2e—az n+1 ; i
I ) = i DD ¢ e (L), (13)
where
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Equation (13) shows on closer analysis that as n increases the oscillatory terms become
more and more dominant, giving progressively sharper and higher periodic peaks in
f@ 0.

Equation (3) was also solved under different assumptions for ¢(z, y) viz. ¢(z, y) =
c(xz + y) and ¢(z, y) = cxy. The solutions, except for some special initial conditions, are
involved, though quite straightforward. They will not be reproduced here, but may be
obtained by transforming equation (3) by means of equations (4) and (5), introducing
Laplace Transforms and solving the resulting partial differential equations.

With physically more realistic assumptions for ¢(z, ¥), e.g. ¢(x, y) = c(='® + y'/*)*
(capture cross-section for two spheres), equation (3) becomes so involved that it has to
be treated numerically.

The following meteorological problem provides an illustration of the theory developed
above. Marshall and Palmer (1948) found a simple expression for the distribution of the
raindrop sizes. Their exponential relation,

N, = NP, (14)

where N,dD is the number of drops in the diameter interval D — D <+ dD in unit
value of space,
N, is a universal constant,
A is a rain-intensity parameter,

fits the observed data of Laws and Parsons (1943) very well except at small diameters.
This deviation at small diameters may be explained by assuming the distribution given
by equation (14) subject to a collision process with the above form of ¢(z, y). The results
are shown in figure 1. An attempt was also made to explain theoretically the whole dis-
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F16. 1. The marked points represent the experimental data of Laws and Parsons, the straight line is
obtained from the Marshall-Palmer relation, the curved line represents the calculated distribution.
Np, A, D are explained under Eq. (14) in the text.



234 NOTLS [Vol. NI, No. 2

tribution given by (14), but the results are not yet satisfactory. This means probably
that the form of ¢(x, y), chosen above, does not describe the physical situation suf-
ficiently closely.

The author is indebted to Professor J. S. Marshall, of McGill University, for sug-
gesting the above problem, and to Dr. Walter Hitschfeld, of MeGill University, for
helpful suggestions concerning the physical model used.
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VARIATION OF COEFFICIENTS OF SIMULTANEOUS LINEAR EQUATIONS'
By JOHN E. BROCK (M<idwest Piping Supply Co., Inc.)

1. Introduction. In dealing with sets of simultancous linear equations it sometimes
becomes necessary to modify one or more of the coefficients (to correct errors or for
other reasons) after the solution has been obtained. Methods of obtaining the corre-
sponding modifications in the solution with a minimum amount of computation have
been treated by B. L. Weiner®, and in a discussion of Weiner’s paper (which bears the
same title as the present paper), I. F. Morrison® indicates a matrix formulation of the
analysis. In the present paper, we develop three particular prodedures each of which
appears to be quite simple and quite useful.

Matrices are used throughout in these developments. Both matrices and scalars will
be denoted by ordinary italic letters. Letters with subscripts will denote matrix elements
(scalars) and other scalars will be easily distinguished from matrices. A symbol denoting
a matrix or matrix product when enclosed within parentheses and followed by subscripts
will denote the appropriate element of the matrix, thus(ab);; = ¢;; where ab = ¢. Super-
seripts will be used both to denote exponents and to serve as distinguishing indices;
there should be no difficulty in distinguishing between these usages.

It is presumed that we know the set of inverse coefficients for the system, that is,
the matrix which is inverse to (reciprocal to) the original coefficient matrix. This is not
a severe demand since the reciprocal matrix is frequently already known or can be com-
puted without much trouble makmg use of calculations already performed in obtaining
the original solution.

So that the operations will not be obscured by voluminous calculations, the order,
n, of the systems in the examples chosen for illustrative purposes is small. However, it
is obvious that the advantage afforded by the procedures described here increases as n
increases.
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