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Substituting from (4.1), we have

nX' /»0OS~* ll/'/C*'— H) J

x<2> = m( 1 - m*yU2My'-u\-1 / dn J0{k{x' - M) sin 0)]
Jo Jo

(4.4)

^ {[(»' - m) COS 0 - 2/'] vV[m, (x' - m) cos e - 2/', r]J de

The final solution for the pressure distribution on the upper surface of the wing,

obtained by substituting <£a) in (2.8) and adding x<2) from (4.3), is given by

x(x', y', 0+, r) = (1 - myW2M[<t>lV{w'} + ^ {w'} (4.5)

We remark that the results (4.3) and (4.5) are not restricted to harmonic time dependence,

since they are valid for all frequencies.

In the case of a subsonic leading edge (m > 0), it would be necessary only to replace

<£<u{wM by <£"'{«/} in (4.3).
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NOTE ON THE MEAN SQUARE VALUE OF INTEGRALS IN THE

STATISTICAL THEORY OF TURBULENCE*

Bt C. C. LIN (Massachusetts Institute of Technology)

1. In the statistical theory of homogeneous isotropic turbulence, it is sometimes

of interest to evaluate the mean square value of certain integrals, such as the pressure

fluctuation over a sphere. The purpose of the present note is to give such an evaluation

for integrals over a sphere and for similar integrals over spaces of other dimensions.

The analysis shows that the final answer can be interpreted in terms of dimensional

arguments; provided the length scale used is the geometrical mean of the scale of turbu-

lence and the linear scale of the region over which the integral is taken. The results could

be applied to the problem of the noise generated by turbulence.

2. Consider, for definiteness, the pressure fluctuation over the surface of a sphere.

Extension to the study of other quantities can be easily made. Let the integral be

•denoted by

= / V dS, (1)

where p is the pressure fluctuation at a point P, and the surface integral is extended over

a sphere of radius a. We may also write

= / V' dS', (2)
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where p' is the pressure fluctuation at a point P', and the integral is extended over the

same surface of the sphere. Thus, if we calculate I2 by multiplying (1) and (2), we obtain

</2> = J dsf W) dS>, (3)

' where ( ) enclosing a quantity denotes a statistical average.

In isotropic turbulence, the statistical correlation {pp') depends only on the relative

position of the two points P and P'. Thus, the integral

= J (pp') dS' (4)

is independent of the position of the point P, and we have

</2) = W/. (5)

To evaluate the integral J, we may take the point P as the origin of a system of

spherical coordinates. The element of area can be represented very simply if we con-

sider zonal surfaces at a distance r from the origin. In fact,

dS = 2irr dr. (6)

Thus,

J = 2k(j?) [ (S>(r)rdr, (7)
J 0

where (p2) is the mean square value of the pressure fluctuation, and 6>(r) is the correla-

tion coefficient for pressure.

For very small spheres, we have the approximation
»

(P(r) ~ 1 for 0 < r < 2a. (8)

Then J may be approximated by

Jo = 4 xa2<p2> (9)

and (I2) may be approximated by

<72)o = MV) (10)

This also follows, if we write

I = 4:Tra2p (11)

for very small spheres.

For large spheres, J may be approximated by

Joo = 27r(p2) [ <9(r)r dr. (12)
Jo

This may be written as

= 4r (p2)l*, (13)
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where I is a scale of turbulence defined by

212 = f <P(f)r dr. (14)
-'0

Then

(I2) = (W)(4tP)(p2>. (15)

The ratio (I2)/(I2)0 is equal to

$ - 0"
In the limit a —><*>, this approaches zero. This is to be expected since 7/4ira2, being the

average value of I over the sphere, approaches zero when the sphere increases indefi-

nitely in size.

In many cases, we are interested in averages over spheres of a size larger but com-

parable to the scale of turbulence; then (15) and (16) may be used as suitable approxi-

mations.

3. From the above arguments, it is obvious that the order of magnitude of (I2) is

independent of the detailed shape of the surface under consideration. Thus, we may

write

(I2) = k2(j>WL\ (17)

where k2 is a constant, depending somewhat on the shape, I is a scale of turbulence, and

L is a typical linear scale of the surface.

The formula (17) may be easily generalized to other dimensions. In general, we have

(II) = kntf)(lLY, (18)

for an integral

In = J V drn (19)

over an ^dimensional space. Thus, (18) can be obtained from (19) by dimensional

arguments provided the volume integration is associated with the nth power of the

length scale (IL)*, i.e., the geometrical mean of the scale of turbulence and the linear

scale of the region over which the integral is taken.

4. Some care must be exercised in estimating such integrals, if the divergence theorem

can be used to convert them to integrals of lower dimensions. Consider, for instance, the

integral

K-\fxdr (20)

to (20), we obi

(K2) = k3{{du/dx)2)(lLf

over a sphere. If we apply (18) directly to (20), we obtain

'2\ _ 7. //a,. /a~-i2\/7r\3/2

or

(iO-^W (21)
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where X is Taylor's micro-scale of turbulence. However, this is actually incorrect. If

we write (20) in the form

K = J un, dS, (22)

then it becomes evident that

<1C) ~ (u2)(lL)\ (23)

The ratio between the two estimates (21) and (22) is lL/\2. It is clear that the direct

application of the volume formula over-estimates the integral because of the small scale

introduced by the differentiation process. Such occurrences are frequent in the statistical

theory of turbulence. For example, the divergence of the Reynolds stress t,-, = — p(w<u,) is

Based on the left-side, the estimate is

dr.-; r  —
dXj I

while the right-side would give the (incorrect) estimate

dr., ^ t

dXj X*

In all such cases, the lower estimates are to be taken.
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Gasdynamik. By K. Oswatitsch. Springer-Verlag, Wien, 1952. viii + 456 pp. $18.60.

To write a comprehensive treatise on a rapidly expanding field of knowledge is not an attractive

task: there is always the possibility that new developments may soon make the treatment appear dated

or even incomplete. On the other hand, the lack of such a treatise may seriously impede the recruiting

of new scientific talent, because newcomers will find it increasingly difficult to work their way through

numerous important papers written in various languages and scattered over a great number of technical

periodicals. In producing this comprehensive treatise on the dynamics of compressible fluids, the author

has therefore rendered a significant service to all interested in the development of this branch of mechanics

of continua.

Chapter I contains the necessary thermodynamic background. Chapters II and III are concerned

with steady and unsteady flows in one dimension. The fundamental integral theorems are established

in Chapter IV. These integral theorems remain valid in the presence of shocks; the differential equations

of motion are readily derived from the integral theorems. Mechanical similarity is discussed, and various

vortex theorems are presented. Chapter V illustrates the application of the integral theorems to technical

problems. Chapter VI is devoted to the general equations for steady inviscid flow and to exact particular

solutions of these equations (Prandtl-Meyer flow, axially symmetric conical flow, transformations of

Molenbrock and Chaplygin, linearization of Prandtl and Glauert). Chapter VII is concerned with

steady subsonic flows (plane or axially symmetric). In particular, the methods of Krahn, Janzen-Ray-

leigh, Ivarman-Tsien, and RLngleb are discussed. Chapter VIII is devoted to steady supersonic flows

in two dimensions (slightly disturbed parallel flow, shocks and their interaction, method of character-


