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A METHOD OF SOLUTION OF THE EQUATIONS OF CLASSICAL
GAS-DYNAMICS USING EINSTEIN'S EQUATIONS*

BY

G. C. McVITTIE

University of Illinois Observatory, Urbana, III.

Summary. It is known that Einstein's equations in general relativity provide

explicit expressions for the density, pressure and velocity of a perfect gas in terms of

the coefficients of the metric (the potentials) and hence in terms of the coordinates.

Using orthogonal space-times, the expressions involve four potentials only between

which consistency relations hold. It is shown how degeneration of the Einstein equations

to Newtonian hydrodynamics provides general solutions of the equations of classical

gas-dynamics for motions which may be either of constant or of variable entropy.

The consistency relations are obtained in the general case. As an illustration, one-

dimensional gas-dynamics are discussed and it is shown how the consistency relations

are manipulated. The solution in which one or other of the Riemann variables is constant

is obtained as a special case and motions of variable entropy are also attained.

1. Introduction. It is well-known that Einstein's theory of general relativity is a

generalization of the Newtonian mechanics of a continuous fluid but, as far as the

present author is aware, it has not hitherto been realised that Einstein's theory can

serve as a tool in classical gas-dynamics. The object of the present paper is to show

how this comes about. The solutions of the equations governing the motion of a gas

which are obtained impose no limitations on the magnitude of the gas-velocity nor do

they pre-suppose that adiabatic conditions prevail. But they do imply that the gas is

perfect and non-viscous and that its motion takes place under the influence of its pressure-

gradient alone.

The Newtonian absolute time will be denoted by T and the rectangular coordinates

in Newtonian absolute space by (Xj , X2 , X3). The three velocity components of the

gas will be written (JJX , U2 , Us). The summation convention will be used throughout,

repeated greek indices running through the values 1 to 4, whilst repeated latin indices

will take the values 1 to 3. The letters I, m, n will stand for any cyclic permutation of

the numbers 1, 2, 3. With these conventions, the classical equations of motion of a gas

are

QUi i jj. _I dp p .. 12 3)
dT + ' dX,• p dX< + ' ' {l - -1' 2' >'

where (Fi , F2 , F3) is the force per unit mass of gas, excluding the pressure-gradient

force; and the equation of continuity is

df + dX- = °" (L01)

The equations of motion can, with the aid of the continuity equation, also be written as

(pUi) + —jr (pUiUj + Sap) = pF,, (i = 1, 2, 3) (1-02)

*Received January 9, 1953.
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where 5,,- is the Kroenecker delta. The four equations (1.01) and (1.02) express the

conservation of momentum and of mass in classical gas-dynamics. The thermodynamical

quantities usually associated with a gas-motion are the velocity of sound, a, and the

entropy of unit mass of gas, which may be defined as follows: If the specific heats at

constant pressure and at constant volume are cp and c, , respectively, and their ratio,

c„/c„ , is denoted by k, then

a2 = fc2, (1.03)
p

The entropy, S, of unit mass of a perfect gas, whose temperature is 8 and whose equation

of state is p = Rpd, is most conveniently defined thus: Let dQ/dT be the rate of change

"following the motion" of the heat-content of unit mass of gas, then

rdQ T d0 , d fl\ . .
dT * dT + p dT\p)' (1-04)

whence, using the equation of state and the relations

R = J(cv — c,) = (k — l)Jc„

it follows that

^§ = C»^(l0gP~fcl0gp)-

In thermodynamics, the differential of the entropy is defined by dQ/6, but, for our

purposes, it is more convenient to write

dS = dQ/(c,d).

Hence

= ®logp ~ k log p®' ^,05)

or

S — log k -f- log p — Jc log p, (1.06)

where k is a constant, characteristic of each separate unit mass of gas. In particular,

if all unit masses have the same constant value of k, the pressure and density of the gas

are related by the isentropic relation

V = kP\ (1.07)

It is now necessary to summarize briefly the notions of general relativity which will

be required*, but the reader who is not interested in this aspect of the matter may

pass directly to Equations (2.06) to (2.09) and content himself with the process of

verification described in the text immediately following these equations. In general

relativity, an event is specified by four coordinates (x4, x1, x2, x3) of which the first

denotes the time, and the other three, the place, of the occurrence in question. The

*For a more detailed treatment see, e.g. R. C. Tolman Relativity, Thermodynamics and Cosmology,

Clarendon Press, Oxford, 1934.
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events which, for example, constitute the history of the motion of a perfect gas are

regarded as mapped in a four-dimensional Riemannian space-time whose metric is

ds2 = g„, dx" dx'.

The velocity of the gas is represented by a four-dimensional vector (w4, u, u, u3) satisfy-

ing the equation

1 = g^.uV, (1.08)

whilst the mechanical quantities that are the counterparts of those whose partial de-

rivatives appear in the equations (1.01) and (1.02), are the components of the energy-

tensor

T' = puV - g" (1.09)

where p, p are the (invariant) density and pressure, g"" are the contravariant components

of the metrical tensor g„, , and c is the velocity of light. The energy-tensor and the

metrical tensor are connected by the ten Einstein equations, viz.

SiryT: = G", - KG (1.10)

where y is the constant of gravitation, T", = g,\TuX, Gt is the contracted Riemann-Chris-

toffel tensor and G, the invariant curvature The last two tensors can be expressed in

terms of the g„v and their first and second derivatives with respect to the coordinates, by

the rules of the tensor calculus.

2. Newtonian approximation to Einstein's equations. It is sufficient for our purpose

to consider orthogonal space-times whose coefficients differ only slightly from those of

the space-time of special relativity where

g*i = 1) ffll = <722 = ^33 = ^2) g»V = 0 (n 7^- v).

We write e = 2y/c2 and assume throughout the calculations that terms of order e higher

than the first are negligible. An orthogonal space-time of the required kind has metric

ds2 = Didx*)2 - A(dx1)2 - B(dx2)2 - C(dx3)2 (2.01)

where

D = 1 — t<p,

A = ^ jl + 4ire(^<p +

B = \ < 1 + 4ttcI
(' + %

2<pi

(2.02)

C — ^2 |1 + ^ireyp +

and <p, <f>i , ipi , <p3 are functions of all four coordinates (x* , x\ x2, x3). The right-hand

sides of (1.10) have been calculated by Dingle* for general values of D, A, B, C. If terms

*H. Dingle, Nat. Acad. Sci., Proc. 19, 559-563 (1933). Also given in R. C. Tolman, loc. cit., pp.

253-257.
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of order e are alone retained in his formulae, the following approximate forms of Ein-

stein's equations are obtained:

4tttTlm = — 4tt« d2<Pn
dxl dxm'

iirtT'* — 4:1T€ V + -2 + ¥>„)
dx dx \ c 1

mil J. / ( | *>m + | 3 Vm , ^Vn

4«T" - —4«|vV + p, r_

where

a2 , s2 , a2
^ = /-,_1\2 + „ !l2 +

(ax1)2 1 {dxj r (ax3)2.

Using also (1.09), the preceding equations become

pu'um =
dx' dxm'

„! / , Vm + ¥>»\

+ p - (, + + |^ +

,n\2 fVl,

(2.03)

(2.04)

where, to a sufficient approximation, the velocity four-vector satisfies

{uf - ~ {(w1)2 + (W2)2 + (u3)2} = 1. (2.05)

There are eleven equations in the set (2.04) and (2.05), whose left-hand sides contain

the six functions of the coordinates p, p, u4, u1, w2, u3; whilst their right-hand sides

involve the four functions <p, <pi , <p? , <p3 . Obviously therefore there must be additional

relationships between these two sets of functions and, in principle at least, it is possible to

eliminate p, p, u*, u, it2, u3 from (2.04) and (2.05) and thus obtain differential equations

involving only ip, <pi , <p2 , and <p3 . Such equations will be called consistency relations

because, unless <p, <px , <f>2 , <p3 satisfy them, the eleven equations (2.04) and (2.05) will

be mutually inconsistent. We shall show later how these consistency relations are ob-

tained and how they are manipulated in the calculations: we must first derive from

(2.04) and (2.05) the corresponding equations in Newtonian hydrodynamics. This is

done, as usual in relativity theory, by neglecting terms of order 1/c2 and, to this end,

it will be assumed that <p, <f>i , , ip3 , and the four u" contain no terms of order c2. The
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Newtonian velocity components {XJx , U2 , U3) will be the degenerate forms of the

ratios (dx1/dxi, dx /dx*, dx3/dx*) = (w'/w4, w2/w4, u /u) when terms of order 1/c2 are

neglected; and the coordinates (xi, x1, x2, a:3) will become the Newtonian coordinates

(!T, X, , X2, X3). Neglecting terms of order 1/c2 equation (2.05) reduces to the statement

that m4 = 1 whilst the following set of equations is obtained from (2.04):

>u>v- - -Jrix.- (2-06>

fV, - -*XiT, (i - 1, 2, 3), (2.07)

rr2 i d (p . d <pn . d <pm /q r\o\

pUt + p = -w + ^ + aZ2, (2.08)

p = -VV (2.09)

In these ten equations p, p now stand for the Newtonian density and pressure respec-

tively. It is easy to show by direct partial differentiation that, if the quantities given

by (2.06) to (2.09) be substituted into (1.01) and (1.02), these equations are satisfied

identically provided thatFi = 0, (i = 1, 2,3). Thus a solution of the equations of classical

gas-dynamics has been obtained for the case when the gas is moving under the action

of its pressure-gradient alone. The solution however involves the four functions <p, <p, (i =

1, 2, 3) of the coordinates X, and of T, which are not independent but are subject to

consistency relations that may be obtained as follows:

Elimination of p and the three T7, from equations (2.06), (2.07) and (2.09) yields

the three equations

d2<Pi

dXm dX: - U^f-iSif)/vV (2-10)
Again elimination of p, p and the three £/, from (2.07), (2.08) and (2.09) yields three

equations, only two of which are however independent,

Ob ~ dbV-+ db ̂  = {{di?df) ~ (wfdf)}/vV (2-n)
The ten equations (2.06) to (2.09) may then be replaced by the five consistency relations

(2.10) and (2.11) together with the further five equations

^ VV, U= 1,2,3),dXi dT/

p = - vV,

^i ) i , i +( *** v./-*
P gT2 + 3 V ^ 2. ViJ 3 Z. dX2 + 3 V^x, dT) / v'

(2.12)

where, in the formula for p, it is presumed that <pi , <p2 , <p3 have been chosen so as to

satisfy the consistency relations. It is worth noticing that p and 4ir<p are connected by

Poisson's equation and therefore 4r<p is the gravitational potential of the distribution

of gas. The corresponding gravitational force has however been neglected in determining
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the motion of the gas since, as we have seen, equations (2.06) to (2.09) imply that no

force other than the pressure-gradient is acting.

3. One-dimensional gas-dynamics. As an illustration of the foregoing general theory,

we consider certain types of motion in which the velocity of the fluid is parallel to a

given straight line and in which the pressure and density vary spatially only with respect

to distance measured parallel to this line. If the line is chosen to be the X-axis and

distance along it be denoted by X, motions of this kind are defined by assuming that

all the variables in equations (2.10), (2.11) and (2.12) are functions of X and T alone.

It then follows at once from (2.12) that U2 = 0, U3 = 0, and that only Ut = U survives.

The consistency relations (2.10) are identically satisfied, whilst the relations (2.11)

are also satisfied by taking

<Pi =0, <p2 = <P3,

ay2 = / ay V /ay
dX2 \dX 377 / dX2'

(3.01)

Hence formulae (2.12) reduce to

U ay /
3X377

d2ip

dX~2

d2<p

dX2'

* - d'* 4.

V ~ ~rfi +
z_dy_y / ay
\dX dTJ / dX2'

(3.02)

which provide the general solution of the problem of one-dimensional gas-dynamics

which we are seeking by the method of Einstein's equations. The solution is given to

within an arbitrary function <p of X and T, which, from the purely mathematical stand-

point, can be chosen in any way we please. But it is important to notice that not every

such selection will give a physically acceptable solution as may be seen by considering

the choice

tp — A cos (X — qT),

where A, q are constants, which leads through (3.02) to

U = q, p = A cos (X — qT), p = 0.

Thus the velocity of the gas is constant, its pressure is zero and its density is alternately

positive and negative, vanishing at places where X = qT ± (n + §)ir, (n, an integer).

Such a distribution of gas would clearly not be considered physically admissible.

The method of solution of equations (3.02) therefore consists of finding, by trial

and error, a function <p that will correspond to a physically significant situation. The

process of selection may be guided by some a priori requirement respecting the mathe-

matical forms of U, p or p. As an example, let it be required to find all permissible den-

sities and pressures for a perfect gas moving in such a way that its velocity is given by

U = (n+ 1 )[X/T + nq/(n + 1)], (3.03)
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where n is a pure number and q is a constant with the dimensions of velocity. Writing

M = dip/dX and substituting from (3.03) into the first of equations (3.02), it follows

that jli satisfies the first-order partial differential equation

dJL + ,n , iJ* , rcg ) iE = 0
dT -t- (n -t- i)yT + n + dX u-

whence

- - n -
where / is an arbitrary function of the argument (X/T + q)T'n. It then follows that

* = r+,F{(^ + + H(T), (3.04)

where H is an arbitrary function of T and

F = I + dX,

T being treated as a constant in this integration Introducing a new variable f by

f = (f + q)r-n, (3.05)

and denoting differentiation with respect to T by a prime, equations (3.02) yield

V = (»+ l){rr - q/(n+ 1)},

_ rp— (n+1) d2F

~ w (3.06)

By means of these expressions for p and p, it is possible to calculate the velocity of

sound in the gas and the rate of change of entropy of unit mass following its motion.

Formula (1.03) gives

a2 = k(n

whilst (1.05) with d/dT = d/dT + U(d/dX) yields

dS _ k(n + 1)
dT ~ T

. n - 1 f d (F\ H"'T2 ' ' // . d (F\ H"Tl-n\

+ T lr dflfj (n+l)n(n - di it) (n + l)nf- (3"08)

Obviously, a physically acceptable case must have p > 0, i.e. F must be such that

d2F/d£2 < 0 for all values of f corresponding to the region of space occupied by the

moving gas, and for all relevant times. Moreover the pressure p and the square of the

velocity of sound must both be positive; hence F, H and n must be chosen so as to fulfill
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these requirements. As an aid to the selection of F, H and n it is instructive to specialize

formula (3.08) in two independent ways. Firstly, let it be assumed that H satisfies

H" = (constant) T~\ (3.09)

where the constant may have the value zero. Equation (3.08) then reduces to

dS _ k{n + 1) + (n - 1) m
dT T " ()

Alternatively, let it be assumed that each unit mass of gas conserves its entropy as it

moves, a condition expressed by dS/dT = 0 or

{fc(n + 1) + (n - l)}f21 (j) - { Jl+ "1)n {k(n + 1 )H" + TH'"\ = 0. (3.11)

If both (3.09) and (3.11) hold simultaneously, and F is arbitrary, n is determined in

terms of k by

»«-(*- l)/(k + 1), (3.12)

and since for a real gas

2 > k > 1, (3.13)

n must be a negative number.

(i) Velocity of Sound a Linear Function of X/T.

The effect of choosing particular mathematical expressions for F must now be in-

vestigated and, as a first example, suppose that

F = -At (3.14)

where j4(> 0) and X are constants; and suppose also that (3.09) is satisfied by taking

H = 0. Then (3.06) and (3.07) become

U = (n + l)jrr - ?/(» + 1)} = (» + 1)1 X/T + nq/(n +1)1,

P = 4X(X - 1 )?-*?-<•*» = A\(X - 1 )(X/T + q)x 2r",x-"

p = -A(X - 1 )»(n + l)fxr-1 = -.4(X - 1)nyn + 1)(Z T + ?)T-na"' ', (3.15)

a = {-£n(n + + 1)| (X/T + q),

whilst dS/dT is given by (3.10). Thus the choice (3.14) for F leads to an expression

for the velocity of sound which, like that for U, is linear in X/T. But p, p and a2 must

all be positive in a physically acceptable solution and therefore

n(n +1) <"0 and X > 1. (3.16)

The first of these conditions is clearly satisfied in the constant entropy case in which

n is given by (3.12). If further, the motion is isentropic and the expressions (3.15) for

p and p are substituted into (1.07), it follows, by considering the indices of f and T
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in the resulting formula, that

k(\ — 2) = X and k(n + 1) = 1 — n.

The second condition is, of course, the same as (3.12) whilst the first determines X in

terms of k, viz.

X = 2k/(k - 1). (3.17)

Because of (3.13), X is greater than unity as required by (3.16). Using (3.12), (3.17)

and (3.15), the solution for isentropic motion is

V =
(X k - 1 \

1 \T 2 q)'k +

2k(k + 1 )A (X , Y"*-1'
" (*-!)■ lr + «/ ■

a =

(k - l)2

2A (X . r
k + 1 \r + V

fc - 1 (X , \
fc + i It + 9/'

(3.18)

In the conventional treatment of isentropic motion in gas-dynamics based on the method

of Riemann*, the solution (3.18) is obtained by putting one of the Riemann variables

r,s equal to a constant. But the Riemann method gives, in the first instance, explicit

values of U and of a, whereas the present one simultaneously determines p, p, U and a.

This is due to the use of the gravitational potential 4vtp that corresponds to the density p.

A second point of difference is that the isentropic condition (1.07) is introduced a priori

in Riemann's method and it is therefore not easy to modify the method when variable

entropy motions are in question. Such cases arise, for example, in the motions of inter-

stellar gas clouds which are losing energy by radiation, a problem that has been attempted

by Burgersf using the classical treatment. Variable entropy motions however present

no greater difficulty than do adiabatic motions if the method we are here presenting

be employed. For example, the solution (3.15) with the conditions (3.16) corresponds

in general to variable entropy, the rate of change of entropy following the motion falling

•off inversely with the time by (3.10). In such motions the rate of loss of internal heat-

energy in ergs per sec. per cm3 of the gas is

— — _ t dQ — Rp® ri»S _ p dS
dT~ pdT~~k-ldT~~k-l dT'

Using (3.10), and (3.15) there comes

dE
dT ~TT— {-"(« + !)){*(» + 1) + (n - D)(f + qfT-*-"-3. (3.19)

*B. Riemann, Oeuvres Mathemaliques, Paris, p. 177, 1898. A summary of the method is given in

G. C. McVittie, Mon. Not. Roy. Astron. Soc., London 110, 224-237, (1950).
|J. M. Burgers, K. Ned. Akad. v. Wet., 29, 600 (1946).
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By hypothesis A > 0, and, by (3.13) and (3.16), 2 > k > 1, A > 1, and — 1 < n < 0;
hence all the constant factors in dE/dT are positive provided that k(n + 1) + (n — 1)

is also positive. If the gas is monatomic, k — 5/3, and n must lie in the restricted range

—1/4 < n < 0; if the gas is diatomic, k — 7/5, and n lies in —1/6 < n < 0; and so on.

Thus by a suitable choice of n depending on the value of k, equations (3.15) give the

motion of a gas which is losing heat-energy per unit volume at the rate given by (3.19).

(it) Velocity of Sound a Quadratic Function of X/T.

As a second illustrative example in the choice of F and H, we consider

F = —Al; log (f + B), H" = 4ABn(n + 1)T~\ ~ = 0,

where A(> 0) and B are constants. Equations (3.06) and (3.07) then become

V = (n + l)\X/T + ng/(n +1)},

p = Y (X/T + q + 2Br)/(X/T + q + BTn)2,

p = -n(n + 1) ̂  (X/T + q + 2BT)'/(X/T + q + BT),

a2 = -n(n + 1 )k(X/T + q + 2BTn)(X/T + q + BT),

where n = —(k— 1 )/(k + 1). Since n < 0 for any real gas, it is evident that, as T

increases, U and a will ultimately both be linear functions of (X/T + q), as in (3.18), but

the formulae for p and p will not become functions of (X/T + q) alone.

4. Further developments and conclusions. The one-dimensional gas-dynamics dis-

cussed in the preceding section dp not exhaust the applications of the equations (2.10),

(2.11) and (2.12). The case of spherical masses of gas in motion has also proved tract-

able and, by proceeding to the second approximation to Einstein's equations through

the inclusion of terms in t, it has been possible to take account of the gravitational

self-attraction of the mass of gas. The initial coordinate system employed in (2.01) is

moreover not unique and an analysis of the different permissible coordinate systems

has thrown light on the meaning of coordinate systems in general relativity and on

the problem of gravitational waves in that theory. These and other related problems

will be discussed by the author in a forthcoming publication. In the meantime, it has

seemed appropriate to give the essence of the method in the hope that it will be found

useful by other investigators.


