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Adding to the expression (10) the contributions made by the loads OAE, OCG and

OCF, and further, adding to the expression (11) the influence of loads OBG, ODE and

ODF, the term Amn for the whole plate is

a — 16P(1 — m2) (m2 , n2\~2 , ,ns ,
Amn =    I—2 + 72) cos (vtvk/2) cos (nir/2). (12)

x EImn ^a 0 >

The expression (11) gives a trivial value of Amn , because with both m and n odd,

Amn would vanish, which of course is impossible. It is seen that the equations (10) and

(11) are true only for m ^ n, which, however, does not give any practical result. More-

over, we cannot set m = n, in the expression (10) and (11) because a value Amn equal to

infinity would result. It is clear that the integration performed is true only when m

equals n; hence we must go back to the expression (9) and set there m = n. With this

substitution expression (9) will yield the following value

212 1
t/2 j

u sin 2mu du = ~ . (13)
4mir

For the load OAH, the term Amn from (8) becomes

irmEI \a b 1

and for the whole plate

(> + 1)-. (15)\a b J
A =

mn

xrii EI

Finally the expression for the deflection is

w
16P(1 — ix) (1 , \ \ j . TVX . iry , 1 . 3irx . 3ty , \ /ir>N

=  6t^t i~2 + TaJ ism — srnf+ -sin sm-^ + (16)
71- EI \a 0 / y a 036 a b J

Thus, through this operation a double series for the deflection of the rectangular plate

under pyramidal load is reduced to a result involving but a single series.

A RANDOM WALK RELATED TO THE CAPACITANCE

OF THE CIRCULAR PLATE CONDENSER*
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Abstract. It is shown that the solution of Love's equation for the capacitance of the

circular plate condenser can be expressed in terms of the mean duration of a certain

one-dimensional random walk with absorbing barriers. The interpretation as a random

walk makes it possible to confirm the fact that the actual capacitance of the condenser

is always larger than the value given by the standard approximation for small separa-

tions, and yields an upper bound as well. In addition to its theoretical interest, the

*Received November 21, 1952.



342 NOTES [Vol. XI, No. 3

random walk appears to provide a practical means for the calculation of the capacitance

by a Monte Carlo technique.

1. Introduction. The purpose of this note is to point out an equivalence between the

mean number of steps of a random walk, and the capacitance C of a condenser consisting

of two equal, infinitely thin circular conducting disks of radius a, separated by a distance

Kd.

It is a classical result that for k —•> 0, C ~ a/4/c, and it is also known (Jeans [1])

that lim„_„ C = a/ir. A more precise formula for small k dates back to Kirchhoff [3],

who also discusses a paper by Clausius on this subject. A formula of Nicholson's [5]

said to give C for all k by means of a definite integral has turned out to be incorrect.

(Love [4] has pointed out fallacies in Nicholson's reasoning. Moreover, it can be shown

by direct consideration of Nicholson's integral that it does not even give the correct

asymptotic formula as k —> 0). Present-day knowledge regarding the value of C for

general values of k appears to be restricted to the following elegant result obtained by

Love.

Lemma 1. If f (t) is the solution of the integral equation

m

then

where

L i + £ - <)■'"-1 <-'/«< *<>/«> w

c - (2)
7T

M = 5 r M dt. (3)
& J-1/«

It will be shown that both f(t) and n have very simple interpretations in terms of

a random walk in the interval \ x \ < 1/k. The results are expressed by the following

theorem.

Theorem 1. Let 0<(z = 1, 2, •••) be independent random variables, such that

0 < 6i < 2ir, and Prob < A\ = l/2ir A, (0 < A < 2t). Consider the random walk

starting at x t [— 1/k,1/k] whose i-th step equals tan 6, . We will say that absorption

occurs at step k if the k-th step is the first step landing outside [— 1/k,1/k], Then f(x)

is the expected number of steps to absorption.

Corollary. Let the walk start at a random point in [— \/k,\/k] (i.e., a point

drawn from a distribution with flat density). Then y. is the expected number of steps to

absorption.

2. Derivation. It will be seen that Theorem 1 is a corollary of the following result:

Theorem 2*. If

(a) K(x,t) is continuous and > 0 (a < x < b, a < t < b),

(b) there exists a constant a > 0 such that

[ K(x,t) dt < 1 — a for all xe[a,b], (4)
J a

*See Wasow [6] for a different proof of this result under a less restrictive hypothesis.
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then there exists a random walk starting at x whose mean number of steps to absorption

is f(x), where

f(x) - f K(x,t)f(t) dt = 1 (a < x < b). (5)

The dispersion of the number of steps will be finite.

First we derive the rather obvious

Lemma 2. If £ and rj are random variables, taking on non-negative integral values,

and

Pk = Prob {£ > k] < Qk = Prob {v > k] (k = 0, 1, 2, • • •)

then

{£) < (v) and <£2) < (v2).

Proof:

(v) = E k(Q> - Qt+i) > E KQk - Q*+0 + (^ + i)Q^+, = E Qt.
0 0 1

Letting N —> <», we see that the term to the right of the inequality approaches (r?),

showing that (77) = E" Qt > arid consequently ({) < (ij). The inequality for the second

moments can be proved in the same way.

Proof of Theorem 2. For each x t [a,b\ construct a continuous function S(x,t) such

that

(a) S(x,t) >0 (— co < t < 0°)

(b) [ S(x,t) dt = 1

(c) S(x,i) = K(x,t) for a < t < b.

For fixed x, the function S(x,t) should be thought of as a probability density. The random

walk is defined inductively as follows: We start at x, and stop when first landing outside

[a,6]. Having taken n steps, and assuming the nth step lands us at y t [a, 6], the next

step is taken to the point X, where

Prob {X < u] = f S(y,t) dt.
J — CO

Let £ = £(z) = number of steps to absorption if the random walk starts at x, and

Pk — Pu(x) = Prob {£ > k\. If before a given step occurs, absorption has not yet taken

place, then the probability of absorption as a result of the step is not smaller than a.

Thus Pi = 1, and Pk < Qk , where Qk = (1 — a)*-1. By Lemma 2, (£) = f(x) < I/a,

and (|2) < (2 - a)/a . Dispersion [£] = <(£ - <£»2) = (?) - <£>2 < (2 - «)/a2. Thus

f(x) exists, and has a finite dispersion.

Now to show that f(x) satisfies (5).

Define /(x) — 0 for x ? [a,6], Then for all random walks whose first step carries to
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y, the mean number of steps to absorption is

fix | y) = 1 + f(y)

Therefore

J f{x | y)Six,y) dy = f Six,y) dy + J f(y)Six,y) dy,

which reduces to

fix) = 1 + f fiy)Kix,y) dy
J a

as was to be proved.

Theorem 2 follows from the observation that the tangent of a random number uni-

formly distributed in (0,2ir) has the probability density (l/ir)/(l + a;2). The a of Theorem

2 can be taken as

1 — I/7r f a''X 2 = (2/ir) Arctan k.
J-u. 1 + x

Thus

fix) < . T , and C < 0 . °  for any k.
•^ 2 Arctan <c 2 Arctan /c

3. Further remarks. It is interesting to note that checks on the asymptotic values

of C as k —» and k —» 0 are easily possible.

For k —* 00, we have of course /(2) —> 1, as can be seen either/rom the random walk,

or the integral equation (1). Therefore n —> 1, and C —> a/r.

For k —»0 the formula C ~ a/4« can be obtained by using a result of Kac and Pollard

[2] which also yields the conclusion that C > a/4k. Kac and Pollard consider a con-

tinuous random motion on the x-axis, where if the particle is at point x0 at time t0 ,

its position at time t + t0 is given by a Cauchy distribution with semi-interquartile

range t. We now make the observation that if one observes such a continuous random

motion at the discrete time points t = 0, 1, 2, • • • , and records the observed positions

at these instants, the result is the generation of a discrete walk with exactly the properties

defined in the hypothesis of Theorem 1.
Let f*ix) be the mean time to absorption of the continuous random motion, if it

starts at x. As a simple consequence of the above observation we have fix) > /*(x).

Therefore

/i/« f*ix) dx.
-i/«

Using the result of Kac and Pollard for E\Tia,b,t)\ ([2], page 383) we obtain

f*ix) = (7 - a:2)"2-

Therefore

C = — > ~ r rix) dx = f. (6)
t 2ir J-\/K 4k
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In other words, C is always larger than the value predicted by the usual asymptotic

formula for small separations. For k —> 0 it is heuristically evident that /(;r) ~ f*(x),

so that C ~ a/(4k), as expected, f

A simple, plausible, "physical" proof of the inequality C > a;4k can be given.*

C equals the ratio of charge per plate to potential difference between plates. The capacitor

can be considered as being cut out of a pair of infinite parallel plates. Before the cut-

away portions are removed the ratio of charge to potential difference is a 4 k-. When

the cut-away portions are removed each particle of charge moves away from the axis,

and therefore the field intensity at each point of the axis is decreased below its previous

value. Since the potential difference is the integral of this field intensity along the axis,

the argument shows that the potential difference is reduced, and the capacitance there-

fore increased from cs/4k.

4. Practicability as a Monte Carlo method. If a = ((£ — p.)2) is the standard devia-

tion of £, and n walks are taken, yielding & , £2 , ■ • • as the observed values of £, then

a/n'2 will be the standard deviation of the empirical mean, and t = a 'fin1'2 will be

approximately equal to the ratio of standard deviation to the mean.

We will restrict ourselves to small k, as it is conjectured that the n required for

achieving a given « steadily decreases as k increases. For small k, a < 21/2/a ~ 7r (21/2 k),

ix > 7t/4k. Therefore, asymptotically for small k,

« < (8/nYn. (7)

A numerical experiment, using k = 0.1, and n = 1000 was made, using automatic

computing machinery. The results were an empirical mean value of 10.101, and an t of

approximately 0.034. For n = 1000 the right-hand side of (7) yields e < 0.09.
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