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That mathematics plays a certain role in various phases of economic theory is, of

course, quite well known. The number of mathematicians and economists unaware of

the discipline known as "Mathematical Economics" is surely small. Unfortuntely, the

number of mathematicians and economists who are aware of the aims, the methods and

the successes (the failures are, as is always the case, only too well known) of this rapidly

expanding field, is likewise small.

The majority of us are exposed in the very early stages of our training to simple

applications of mathematics in economics. To cite an instance, the classical high-school

course in algebra which does not use the price-demand relation to illustrate the ideas of

an inverse variation, is probably non-existent. A good many mathematicians think that

this is almost the sum total of pure mathematical depth and sophistication that the

economist encounters.

On the other hand, since statistics is, in so many obvious ways, ideally suited for

analyzing certain types of economic phenomena, one is often fooled into believing that

this represents all of the applied mathematical ideas that can play a central position in

an economic investigation.

The appearance, in recent years, of the book "The Theory of Games and Economic

Behavior" by von Neumann and Morgenstern [40] has been instrumental in dispelling

from the minds of many mathematicians and economists some of the false ideas about

what mathematics entered, and possibly more important, what mathematics does not

enter, in the problems arising in everyday mathematical economics.

The purpose of this paper is, in part, to give a presentation of some phases of pure

mathematics that are in current use in the economic world. We do not claim or pretend

that this paper is either exhaustive or definitive—we merely propose to touch on a few

boundary points with the hope that some of the readers will feel an urge to dig deeper

into the interior. This paper is being written by a mathematician primarily for a math-
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mission research staff for the fruitful discussions, suggestions and criticisms which they have contributed

to the making of this paper. This paper is a result of the work being done at the Cowles Commission for
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ematical reader. The topics we discuss are thus selected, not so much for their economic

depth or significance as for their mathematical interest.

Historically, the calculus entered very quickly into the study of price-demand re-

lations. The calculus was, in fact, essentially the only tool used, until fairly recently in

all of mathematical economics. (For a history and description of both the methodology

and problems considered up to the beginning of the 20th Century see the authoritative

article by V. Pareto [43]).

To say that the calculus, as a fundamental weapon, has by now played out its role

would be both exaggerated and misleading. However, its initial foothold has been weak-

ened considerably, and in certain places, arguments previously employing calculus

techniques have been reworked using more powerful and more modern methods. There

are several fundamental reasons for this trend to get away from using the calculus.

Firstly, in a desire for generality, the conditions of differentiability placed on functions,

especially when not needed, are aesthetically unsatisfactory. Secondly, the existence of

derivatives for functions arising from a study of complex and oftentimes highly discrete

situations is by no means a natural assumption. Thirdly the appropriate calculus con-

ditions imposed on the functions considered at times obscure the essential nature of the

problem. Added to this are the huge successes achieved in other fields (physics, for one)

by the introduction of more of the full mathematical power available today.

This accounts for the tendency, with certain economists, to introduce some "natural"

tools in their domain. The surprising effect (to some people) has been a great simplifica-

tion and reinterpretation of old results and a satisfying surge forward in new research.

Although it is clear that mathematical statistics and game theory play a vital part in

economic theory, we shall not consider their applications here. How and why they are

used can be found very easily, and in many places [3, 33, 38, 40, 41, 50].

As we have pointed out previously, the calculus has performed (and is still per-

forming) a striking function in the discipline. We begin the paper proper with an example

that arises in economics and is handled via the calculus. This example has its origin in

the theory of consumer's behavior; the derivation we present is of the so-called Slutsky

Equation (Slutsky [47]; for a recent treatment of it see Samuelson [45, p. 97-103]).

The problem itself is of classical stature in the economics of consumption. Its solution is

a striking example of how a serious economic result emerges from an elementary math-

ematical analysis.2

We suppose there are n commodities which are labeled 1, 2, • • • , n and a given

consumer. A commodity bundle is a vector x whose ith coordinate represents an amount

of the t'th commodity. We suppose that we are also given prices for each commodity.

Let p be the price vector. Given a commodity bundle x it is assumed that the consumer

derives a certain satisfaction s(x) where s is a real-valued, twice differentiable strictly

convex function. (Economists usually consider a more general class of function, but for

the sake of simplicity we restrict ourselves to the convex case). For economic purposes s

could be equally well replaced by a monotonic increasing transformation of itself. In

order for our results to be economically meaningful, our description of the consumer's

behavior should be independent of the particular transformation applied to s. Finally,

we suppose the consumer has a given amount of money, i*. Subject to the budgetary

^be form of the proof given here is due to G. Debreu.
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constraint

p'x = n (' denotes transposes) (1)

the consumer tries to maximize his satisfaction s(x). Out of this desire, there results

the necessary condition

ds
^ = <rp, <r a scalar and (2)

where a, of course, depends on the particular form of s. (a has traditionally been called

the marginal utility of money).

On differentiating (2) we obtain

S dx = a dp + p d<r (3)

where S is the Hessian matrix of s. S is thus a symmetric matrix.

Differentiation of (1) yields

p' dx + (dp')x = djx. (4)

Let

2 =

- S p
(J

p' o

From the symmetry of S, we have that S is also symmetric. The system (3) and (4)

now becomes

dx
dp

, d/x —x' dp,

Since s is strictly convex, 2_1 exists. Since 2 is symmetric,

dcr

<r

(5)

2"1 =

X

It

where X is again symmetric and where 7 is a column vector and c is a number. Equation

(5) then gives rise to

dx

da

c

X

It'

dp

dfi —x' dp,
(6)

Expanding the right-hand side of (6), we arrive at dx — X dp + y (d/i — x' dp). Thus

dx „ , dx

5 " X ~ "" ' T* - T'
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Combining these we have

and so

X = fp + dix'- <8)

Since X is symmetric, picking out the (i, j) and (j, i) element we have

dXi , dXj dx, , dXj

W,+ " " W. + Xl to'' ('

This is the Slutsky Equation. Notice that the result is independent of the particular

transformation applied to s. The respective sides of (9) are termed the substitution co-

efficients. We now seek an economic interpretation for these. We ask: what changes in

amounts of commodities and what changes in income would leave the consumer's satis-

faction unchanged. From (2), since s is being kept constant, p' dx — 0. So (4) becomes

dn = x' dp. Thus dx = X dp, whence the matrix elements of X, that is, the substitution

coefficients describe the consumer behavior when satisfaction is assumed to be held

constant.

This simple illustration of the use of the calculus, and of a calculus of the most rudi-

mentary form, accounts, to a small degree, for the security the economist felt in the con-

tinued use of the calculus as his primary tool. As a consequence, he felt no particular

urgency to broaden the mathematical repertoire to be applied to his problems. I should

not like to imply that the preceding example is typical, in its mathematical depth, of the

category of problems attacked. Mathematical analysis of a far more penetrating character

was employed by some economic writers. Nontrivial existence theorems in the theory of

differential equations, results from the theory of integral equations, and a great wealth

of related mathematics was put to very effective use. (For an excellent treatment, along

such lines, of a wide variety of topics, see Samuelson's stimulating book [45].)

However, in the late 1930's, the variety of mathematical topics finding application

became more and more diversified and modern mathematical developments began re-

flecting on the nature of the work undertaken by the economist. In the remainder of this

paper we shall touch on some of these. The order of their presentation is not meant to be

chronological. These often involve convex sets or the calculus; this is quite natural,

since such an important part of economics can be viewed as a maximizing activity.

We now consider a situation arising in the phase of economics known as "Welfare

Economics." Before discussing the problem per se we need a brief, crude description of

the general scope of the Welfare Economics. (For a much more thorough description see

Samuelson [45], Arrow [1]).

Suppose that there are n-individuals in a community, designated by 1, 2, • • • , n.

We suppose that each of these has a preference ordering by which he ranks the possible

prospects or social states that can confront him; that is, to the zth individual there

belongs a binary relation i?, defined on the set of possible social states X, 1", Z with the

following properties:

1) XRiY or YRtX,

2) XRiY, YR,Z implies XR{Z.
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Here, R{ is a complete (or as it is sometimes called, a weak simple) ordering; XR{Y can

be thought of as "X is at least as good as F as far as the zth individual is concerned."

Let XPiY denote that XR,Y but not YRiX. A social state X will be said to be optimal

if the following is true: if for any i there exists a Y with FP4X, then for some other

individual j, XP,F. That is, X is optimal if whenever a social state F is preferred to X

by some individual, then Y is not "at least as good as X" according to all other indi-

viduals. Another way of looking at this type of optimality can be formulated as: let

XRY mean XR,Y for all i = 1, 2, • • • , n; R then defines a partial order in the set of

social states; a state X is now optimal if it is a maximal element in this partial order. The

problem of the Welfare Economics is to give a description of (and a prescription sa to

how to attain) such an optimal social state.

Here is a situation which has been handled within the last ten years by two totally

different approaches—one in the framework of the orthodox calculus and the other in

that of the theory of convex sets. In order to exhibit the differences (and the metamor-

phosis) in these two polar attacks on the problem we present two solutions of the same

problem arising in the Welfare Economies. The first treatment we give is the calculus

discussion, and is due to Lange [35].

We assume each individual's preference ordering R{ can be represented by a real

valued function uM, the ith person's utility function. The purpose is to maximize u'\

for each i, subject to the conditions that m(,) is kept constant for j ^ i.

We suppose the utility function of each individual to be a function of the amounts of

each commodity that he gets; that is, if x,-*' is the amount of the jth commodity held

by the ith individual, j = 1, 2, • • • , m, then «(,) = x{2x) • • • , x1°). We further

assume that each u(,] is appropriately differentiable. Let X, = XXi xr'' be the total

amount of the rth commodity which is obtained by the whole community. The Xr are

interrelated by a "technological function" F(X, , X2, • • • , Xm) = 0. The problem then

becomes: maximize , • • • , x1'') i = 1,2, • • • , n subject to the constraints

1) u('\x[7), , x'mn) = constant for j ^ i,

2) XT = ^ x'r" for each r = 1,2, • • • , m,
i-1

3) F(X1 , X2 , ■ ■ ■ , Xm) = 0.

From the theory of Lagrange multipliers, this is equivalent to "extremizing" the

unconstrained expression

Z \{uw + £ J £ x'r" - Xr) + nFiXr , • ■ • , Xr),
t = l r = 1 \i«l /

where the X's and /x's are Lagrange multipliers. Differentiation and elimination yields

duw /duw dF / dF , „ .
dx™/ dx(,° dxj ax. or a r and s-

Equivalently,

du(i) /du{i) dum /duU) „  

S"7/ S?7 ■ £»/ Si77



254 I. N. HERSTEIN [Vol. XI, No. 3

Economically, du'')/dxl^ is the "marginal utility of the rth commodity for the t'th in-

dividual," and the above gives, as a necessary condition, that certain ratios of marginal

utilities be equal. The result is invariant with regard to monotone increasing trans-

formations of the utility functions. The Lagrange multipliers could be interpreted as

prices, and the solution of the problem could be stated in terms of the existence of prices

with certain properties. This will be done in the second treatment we give of this same

problem using the theory of convex sets.

Before turning to the second version of this problem, we digress into several path-

ways suggested by factors which have arisen in the examples which we have already

discussed.

In the situations which we have considered, the following kind of assumptions have

been made: a complete ordering, occurring naturally as a preference ranking, confronts

the economist; he, in turn, wishes to discuss the optimal behavior under this ordering.

In order to do so he resorts to a real-valued function, having desirable differentiability

properties. However, the final description of the optimal behavior is given in a form

independent, to a major degree, of this function. Two questions immediately present

themselves. Firstly, what conditions on the ordering insure the existence of such order-

preserving functions? Secondly, since the final form of the solutions does not depend on

these functions, can all these problems be handled without the artifice of a real-valued

representation of the ordering?

The first of these problems, important as it seems to be, has received very little

attention from the economist. In fact, some economists have even gone as far as to

tactily assume that every complete ordering can be so represented. (The lexicographic

ordering of the unit square offers an easy counter-example to this). In case the completely

ordered set is, in addition, endowed with a "probability-mixing" operation, this problem

has been thoroughly thrashed out by von Neumann-Morgenstern, Marschak [37], and

Herstein-Milnor [25]. For the case in which no such mixture operation exists, H. Wold

[54] did give conditions on the ordering which guaranteed the existence of an order-

preserving function; however, his conditions were somewhat restrictive. In the math-

ematical literature, in a paper by Eilenberg [15] there is given a fairly general set of

conditions for the existence of a continuous order-preserving function. This has recently

been rederived by Debreu [10]. The result can be stated as follows:

Let S be a completely ordered topological space such that

I) S is separable and connected

II) for every a0 z S the sets {a e <S | a ^ a0 j, {a e (S | a0 ^ a\ are closed. Then there

exists on S a continuous, real, order-preserving function.

Since the economist usually works in a finite-dimensional Euclidian space, or at worst,

in a separable Hilbert space, Debreu's condition that his space be separable and con-

nected is really not very restrictive. Incidentally, Debreu has recently shown that if

(I) is replaced by: (/)' S is perfectly separable, then the final result still holds.

As for the second problem, namely that of entirely avoiding the real-valued repre-

sentation of the ordering, the alternative approach, which we are about to present, to

the problem in Welfare Economics furnishes a typical method which has been success-

fully employed. Although this was hardly the main goal of the paper to be cited, it was

an interesting by-product of the approach. The discussion which follows stems from a

paper by Debreu [11].
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Let us again suppose that there are m commodities labeled 1, 2, • • • , m and n con-

sumption units, labeled 1, 2, • • • , n. The activity of a consumption unit is characterized

by a vector x, the consumption vector, in the m-dimensional Euclidian space; the ith

component of this vector being the amount of ith commodity used by the consumption

unit. We suppose that each consumer has his individual complete order R{ defined on

the set of all consumption vectors. It may happen that xRty and yR{x without y = x;

but if we define xl{y if this does occur, this yields a proper equivalence relation, and the

equivalence classes, Si(x), now form a linearly ordered set . The satisfaction space S

is introduced as the set of all vectors S = (Si, S2 ,•••, S„) where <S( t T( . In S a partial

order is defined by

cK2)   / cr(2) o(2) Qf(2)\ v. rr(l)   / rr(l) o(l) Cf(l)\
O — ) &2 j ' ' ' j &n ) O — , 02 ) * ' ' j On J

if and only if S^RtS1" for every i = 1, 2, • • • , n.

The production activity of the system is represented by an input vector y = (yi ,

V* , ' • * , Vm), where y{ is the input (positive or negative) of the ith commodity. Tech-

nological conditions restrain y to belong to a set t?. Let rf*'* be the set of efficient produc-

tion vectors. A family of sets ti,- ,j = 1,2, • • • , r is a decomposition of rj if 17 = X) Vi > the

sum being in the sense of vector sums of sets, rji characterizes activities of the jth pro-

duction unit. If X{ = Xi(s°i) denote the {x{ \ Si(x{) 2: s-} the zth consumption unit,

X = ^ Xi is the set of all total consumption vectors, z = x + y, x eX, y t rj is the total

net consumption of the whole economy. Let z° be the vector whose components are the

available amounts of each commodity. The economic system is constrained by

y e 77, z ^ z° in the vector sense.

The goal of the economic system is to find an S t S, maximal in the partial order

defined on S, which is consistent with the above constraints. We now assume all the

sets Xi , 17,- are convex and closed.

Z = X{ + Vi is then convex.

Using the separation theorem for convex sets, namely, if two closed convex sets with

interior points have only one point in common then there is at least one plane through

that point separating the convex sets, one readily obtains the following result:

A necessary and sufficient condition for S° to be maximal (or for z0 = ^2 x°< + 2 2/?

to be minimal) is the existence of a price vector ■p > 0 and a set of numbers a, , i = 1, 2,

• • • , n so that

a) Xi being constrained by p'x{ 2; a,- , si(xi) reaches it maximum at x° for every i

0) y, being constrained by y{ t j?,- , p'yj reaches its minimum at y] for every j.

Here p is a positive, normal vector to the separating plane. The theorem restates

the following rules of behavior for consumption and production units: each consumption

unit, subject to a budgetary constraint maximizes its satisfaction and each production

unit, subject to the technological constraints, maximizes its profit.

We leave these problems concerning convexity, maximization under constraints and

related topics and turn to a phase of economics which employes completely different

mathematical techniques.

Matrix theory, to some degree, enters into many portions of many diverse fields.
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Matrices are used in these as a pure notational device, as a compact and transparent

representation of systems of linear equations, and in many other subsidiary, convenient

roles, without use being made of essential matrix theory. In economics, also, matrices

make their appearance in this costume. But deep, significant, intrinsic results of the

matrix theory do play an important part. In the recent literature one finds a number of

research papers in economics which employ certain corners of matrix theory in the

fullest. (To cite a few examples, we refer the reader to Chipman [9], Metzler [39], Goodwin

[23], Simon and Hawkins [24] and Solow [48].)

The mathematical origin of a good many of these results is a sequence of papers by

the German mathematician Frobenius [19, 20]. These results have been rederived and

somewhat extended in a simple, modern fashion by Wielandt [53] and Debreu and

Herstein [13]. In these above-mentioned papers, among other results, are obtained

theorems concerning the nature of the characteristic roots of a non-negative matrix A

and the properties of (si — A)'1 for s a sufficiently large real number.

We now consider an economic situation in which these theorems function effectively.

We follow here the treatment of a problem in the theory of international trade as given

by Solow [48].

Suppose we consider n countries carrying the labels 1, 2, • • • , n. Let a,-,- denote the

marginal propensity (that is, the increase in imports from country i by country j per

unit increase in income of country j) of the jth country to import from the ith country,

and a,-,- the marginal propensity to consume domestic goods. Furthermore, let xt represent

the national income of the it\i country, c,- the autonomous expenditure in country i.

Then we have, assuming linearity (which can be viewed as a first approximation for more

general cases)

n

i) = X) a<>Xi + c, •
i-i

In matrix form this becomes

ii) ' (7 — a)x = c,

where a = (a,-,); x, c are column vectors. Economic meaningfulness demands that the

quantities x( , c, be all nonnegative. We assume that all a,-,- ̂  0.

Thus we are immediately forced to consider conditions under which the systems

x = (I - a)'1 c is solvable in nonnegative terms.

The linear equation system (ii) is easily seen to be the static solution of the linear

difference equation system

iii) Ix(t + 1) — ax(t) = c.

A question of importance for this dynamic system will naturally concern the stability

properties of its solutions. These can be shown to be equivalent to the condition that all

the characteristic roots of a are less than 1 in absolute value. For this system Metzler

[39] has proved: if ait ^ 0 it is necessary and sufficient for the stability of (iii), that

I — a have all its principal minors positive. (As a pure matrix theorem this is an easy

consequence of the results of Frobenius, when we use that stability is equivalent to the

condition that characteristic roots of a be less than 1 in absolute value.) These types

of questions are treated in Section 3 of the paper by Debreu and Herstein [13].
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Let us consider a = (a,-,), a nonnegative, n X n matrix. A set, S, of indices will be said

to be closed if ap„ = 0 for q e S, p % S. That is, a closed set is associated with a collection

of countries each of which spends in no country which is not in the collection. If no such

proper closed set exists the matrix a is said to be indecomposable. This definition co-

incides with the purely mathematically motivated definition given by Frobenius [20],

namely: the matrix a is said to be indecomposable if, for no permutation matrix x, the

product irair'1 can be represented in the form

An A

. 0 A,

where the Au are square submatrices. A matrix which is not indecomposable is called

decomposable. If b is a decomposable matrix then there is a permutation matrix ir so

that

B\

irbir'1 = B2

0 Br)

where the Bt are square indecomposable submatrices on the diagonal.

In terms of the economic model, if the import matrix a is indecomposable, then a

dollar spent in any one country will eventually induce spending in every other country.

Let us now assume that the import matrix a is indecomposable. From the results of

Wielandt [53] or Solow [48] we can find a permutation ir which puts a into the form

0 0 • • • 0 Gw

Gx 0 • • • 0 0

TTdTT 1 = 0 G, 0 0

0 0 G„-i 0

where the 0's on the diagonal are square matrices. Economically this can be interpreted

as: the countries in G( spend only in those in G,+1 .

From the Frobenius theorems the following main result can be extracted: "if a is a

nonnegative, indecomposable matrix then a has a positive characteristic root r so that

1) If a is any other characteristic root of a then | a | ^ r;

2) to r can be associated a positive characteristic vector;

3) r is a simple root;

4) an increase of any element of a yields an increase in r.

Moreover if there should be exactly k roots, ax, with | ax | = r then = r exp (2ir\/k),
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X = 1, 2, • ■ ■ ,k and a permutation w exists so that

0 0 • • • 0 Ak

A! 0 ••• 0 0

■Ka-K=0 A 2 ■ • • 0 0

0 0 • •• Ak.x 0

Solow's w, which had a purely economic origin now can be interpreted as k, the

number of characteristic roots of largest absolute value. After w time units have elapsed,

the original expenditures from (?, in Gi+1 has an influence in (?,, giving rise to a cyclicity

of spending.

The above discussion encroaches on a tiny part of this territory, which has already

been staked out by the economist. However, it is typical in the sense that the theorems

of Frobenius play such a central role.

We now concern ourselves with several questions which have a combinatorial flavor

to them. While these are not all phrased purely in economic terms, they have, or should

have, many applications in economics.

The first of these is the so-called "personnel assignment" problem. Suppose that

there are n individuals available to fill n positions. Suppose further that the ith individual

obtains a rating of a,-,- in his ability to handle thejth job. The question then is: how shall

individuals be assigned to jobs in order to have the "overall efficiency" a maximum?

The problem can be put into purely mathematical garb in following vein: given a

matrix A, for what permutation matrix P is the trace of AP a maximum? Of course this

would merely require testing n\ possible permutations. Even for n relatively small this

straightforward procedure would be out of the realm of practical feasibility.

The problem then becomes one of reducing the number of necessary computational

steps. This can be achieved by (at least) two continuizations of the problem. We shall

describe one of these, due to von Neumann [41] in very little detail, later in the paper.

But before doing so, we should like to describe several related combinatorial questions.

A situation very similar to that in the personnel assignment problem is the "desk-

cabinet" problem. This runs as follows: Suppose that there are n desks and n filing

cabinets. Let du be the distance from the ith desk to the jth cabinet. On the assumption

that the individuals assigned to each desk make the same number of trips per day to

their respective filing cabinets, what assignment of desks to cabinets should be made to

insure that the total distance walked is a minimum. Formulated in mathematical terms,

the problem is that of finding a permutation matrix P0 which minimizes the trace of DP

where D is the matrix of distances.

A purely economic variant of this can be phrased as follows: minimize the cost of

production of n plants at n locations if da is the cost of production for the ith plant at

the jth location.

A generalization of the two above-mentioned situations, arising fairly naturally in

economics, involves finding a permutation P0 which minimizes or maximizes the trace

of DP where P is no longer left free to roam over the whole symmetric group but is
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restricted to range only over a subset thereof. In an actual problem this might be realized,

for instance, by the condition that in any reshuffling of locations, railway depots would

be restricted to occupy space only along railroad lines.

A solution to this problem would immediately yield a solution to another one, the

"travelling salesman" problem. The travelling salesman problem, verbally described is

the following: suppose a travelling salesman on his route must visit n cities and return

to his home base which is one of these cities. If he must visit each of these cities once,

and if he knows the distances between all of them, how should he plan his trip so that

the distance he travels is minimal. This can be shown to be equivalent to minimizing

the trace of CP where P is restricted to be a permutation which in its cycle decompostion

is representable as an n cycle.

This relative of the Hamiltonian game can also be exhibited as a special case of a

purely economic consideration due to Beckmann. Let there be n plants, and n fixed

locations where these plants could be situated. Suppose au represents the flow from

the ith plant to the jth plant. Suppose also that k{j is the cost of transportation from

location i to location j. Then how should the plants be located in order that the total

transportation costs among plants are a minimum. If A = (a,-,) and K = (,) and if A'

denotes the transpose, this simply becomes a question of finding a permutation P0 which

minimizes the trace of A'P'KP.

We return to the personnel assignment problem, and present a sketch of von

Neumann's game theory approach to it [41].

Consider the following two person game: we have an n X n checker board, with

each square having two indices, its row index and its column index. The first player

picks a square; the second player then guesses either of the indices of the square which

the first player has picked. He must state which index he is guessing. If he guesses

correctly he receives an amount a,-,- , where i, j are the indices of the square involved,

from the first player. Otherwise he receives 0.

This game is related to the solution of the personnel assignment problem via the

following theorem proved by von Neumann, (where the strategies refer to those of the

first player).

"The extreme optimal strategies of the above game are precisely the following ones:

Consider those permutations P0 which maximize the trace of AP, where A = (1/a,-,).

For each P0 assign the probability a:,-,- to the square i, j where xu = (a/a,-,)5Po(i) where

5 is the Kronecker delta; and where a is the value of the game for the second player.

Using techniques of Brown and von Neumann [7] to get approximate solutions of

games, the number of steps in solving the problem is reduced from nl to a power of n.

Let z — (Zu) be a vector in the ri Euclidian space. We define:

R = {Z = (Z,-,) | 2,-,- ̂ 0, Y,Zii = 1, Z)zi/ = 1},
i i

S = \z = (Za) | Za ^ 0, X)*./ g 1, Y,Za ^1},
i *

P = {z = (za) I zki = 5p(,) , j for some permutation P).

Von Neumann's proof then hinges on the following two lemmas,

1) {S = | z z g w for some w tR},
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where z g w means the inequality is true in each component;

2) R — convex hull of P.

The reader will notice that certain very important current research in economics

have scarcely been mentioned. For instance nothing has been said about the input-

output models of Leontief or the applications of linear programming to economics. We

felt that to do justice to these two would require much more sp::ce than would be appro-

priate for an article such as this. The reader is referred to Leontief's book, The Structure

of the American Economy, [36] for the first topic, the book, Application of Linear Pro-

gramming to the Theory of the Firm, by Dorfman, [14] for the second topic, and the book,

Activity Analysis of Production and Allocation [29] for both.

With this discussion of the combinatorial problems we conclude the phase of the

paper of "detailed" discussion of the applications of mathematics to economics. However,

before concluding we wish to point out briefly some sources where one can find fine

applications of other mathematical techniques.

The theories of differential equations and of difference equations play fundamental

parts, in many connections, in economic theories. Chapter X of Samuelson's book [46]

gives splendid illustrations of the use of techniques from these regions of mathematics.

Beckmann [5] has employed the classical theory of the calculus of variations in his

study of continuous models of transportation. Earlier applications of the calculus of

variation occur in papers by Hotelling [27] and Roos [44] and Evans [17].

Stone has used the theory of graphs in his economic studies. An example of this is

[49]. The theory of graphs has also entered into the considerations of Koopmans and

Reiter [31] of their transportation model. Charnes [8] has utilized the graph theory to

extend certain computational techniques.

Following the trend towards axiomatization in mathematics there have been some

purely axiomatic studies of economic questions; a pioneer effort in this direction is a

postulational study of utility by Frisch [18]. Another example is the study of the exist-

ence of a social welfare function by Arrow [1] and Hildreth [26].

Many other applications of the theory of convex sets can be found than those already

described in this paper. The theory of convex polyhedral cones was first developed by

Weyl [52], and detailed mathematical investigations of these cones were carried out by

Gerstenhaber [22]. These results, and many others, have a variety of applications, as

the reader can see by looking at Koopmans [30], Georgescu-Roegen [21], Samuelson [46],

and Arrow [2] in the monograph Activity Analysis of Production and Allocation. [29].

It is well known how the mathematician's interest in physical and astronomical

problems have led to advances in mathematics itself. We cite here an example of a similar

advance in mathematics which had as its origin a pure economic motivatiop. Not sur-

prisingly, these new mathematical advances brought about have themselves stimulated

the economic problem from which they sprang.

The Menger seminar in Vienna on mathematical economics, amongst many other

topics, concerned itself with that of the existence of equilibrium. This led to the paper

by A. Wald [51]. Soon after von Neumann [42] in proving the existence of an equilibrium

point for an economic system, found it necessary to extend the Brouwer fixed point

theorem. Kakutani [28] then simplified von Neumann's proof and cast the theorem in a

somewhat different light. This lead to an even more powerful topological fixed point

theorem by Eilenberg and Montgomery [16]. Begle [6] took up from there and gave a
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very general fixed point theorem which subsumed that of Eilenberg and Montgomery.

To complete the cycle, Arrow and Debreu [4, 12] have applied those theorems to obtain

rigorous proofs of the existence of equilibrium points for fairly general economic systems.

In conclusion, the author should like to offer an apology to those economists whose

contributions to the field may have been overlooked in this paper. The limitations of

space, as well as the author's incomplete knowledge of the field, make such omissions

unavoidable. An expository paper of this type cannot aim at complete coverage; rather,

the author tried to convey an idea of the range and variety of mathematical results which

have found applications in economics.
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