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Multiplying through by the denominator, we see that this derivative vanishes if and only
if 7° satisfies

BG*+* + (2BFG + EG)7" + (BF* — EF) = 0. 9

Our interest is confined to M > 1, ¥ > 1. Then it may easily be shown, using (8"),
that the two roots of the equation are real; further, one of these roots is negative and
has no physical significance since it leads to an imaginary value of 7.

A graph of A(M, v), computed by using formula (9), is shown as Fig. 2.
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ON THE THEORY OF THE BULGE TEST'
By E. W. ROSS, JR. anpo W. PRAGER (Brown University)

Summary. It is shown that the use of Tresca’s yield condition and the associated
low rule leads to a simple theory for the bulge test for perfectly plastic or strain-hardening
naterials. The basic equations can be integrated in closed form even for finite deflections.

1. Introduction. The ductility of sheet metal under balanced biaxial tension is
letermined by the bulge test: a circular sheet of uniform thickness is clamped round
he periphery and subjected to unilateral fluid pressure which causes the sheet to bulge
lastically. The strain at the pole of the bulge is measured by means of a grid inscribed
n the originally flat sheet, and the stress at the pole is computed from the applied
ressure and the measured curvature and thickness of the deformed sheet. The dimen-
ions of the sheet are chosen so that its flexural stiffness is negligible’; on the other hand,
he strains cannot be treated as infinitesimal.

The first consistent theory of the bulge test was given by Hill.® This theory is based
n the yield condition and flow rule of v. Mises.* It is assumed that the relevant quantities
an be represented as power series in the ratio between the maximum deflection and the
ydius of the die aperture through which the sheet is made to bulge. Powers higher than

1Received Nov. 13, 1953. The results presented in the paper were obtained in the course of research
onsored by Watertown Arsenal Laboratory under Contract DA-19-020-ORD-2598.

2Even for a very thin sheet neglecting the flexural stiffness may not be justified in the neighborhood
the edge. Such edge effects are known to be highly localized, however, and may therefore be neglected
the discussion of the states of stress and strain in the neighborhood of the pole of the bulge. For a
scussion of plastic edge effects the reader is referred to a paper by F. K. G. Odqvist (Reissner Anniver-
ry Volume, J. W. Edwards, Ann Arbor, Mich., 1949, p. 449).

3R. Hill, Phil. Mag. (7) 41, 1133-1142 (1950).

4R. v. Mises, Goettinger Nachrichten 1913, 582-592 (1913).
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the second are neglected in Hill’s analysis which is therefore restricted to moderate
deflections. :

The present paper contains an alternative theory of the bulge test. This theory is
based on Tresca’s yield condition® and the associated flow rule®; its equations can be
solved in closed form without the use of special assumptions concerning the magnitude
of the deflection.

2. Yield condition and flow rule. The middle surface of the bulged sheet is a surface
of revolution, and the principal stresses at a generic point of this surface are directed
along the parallel circle, the meridian, and the normal. In this order the principal stresses
will be denoted by o, , ¢, , and o, ; the initial thickness of the sheet will be denoted by
h, and the radius of the die aperture by a. For the usual small values of the ratio ho/a,
the stress ¢, is much smaller than the stresses o. and ¢,, . The state of stress at any point
of the sheet is therefore essentially one of biaxial tension with the principal stresses
o.and o, .

In the following, elastic strains will be neglected and the sheet material will be treated
as incompressible. The principal plastic strain rates will be denoted by e, , €. , and e, ,
and the yield stress in simple tension by o.

“Tresca’s yield condition specifies that, for plastic low to occur, the maximum shearing
stress must have an intensity, ¢/2, that depends on the state of hardening of the material.
If the three principal stresses are unequal, the state of flow is supposed to be one of pure
shear in the plane determined by the largest and smallest principal stresses. For the
states of biaxial tension considered here, the following basic possibilities must be con-
sidered:

a) If ¢, > ¢, > 0 during plastic flow, then
‘ 6. =0 and en =0, €= —¢ > 0;
b) if ¢, > o. > 0 during plastic flow, then
Om =0 and e. =0, €n = —€, > 0.
Finally, it is assumed that any combination of the flow mechanisms specified under a)
and b) is possible when . = ¢,, . Thus, a third case is added to the list:
¢) if ¢, = o, > 0 during plastic flow, then
0 = 0w =0 and e > 0, e&n > 0, €. = —(e, + €n).

The flow rule c) is a natural extension of the flow rules a) and b); in fact, it represents
the only way in which a continuous transition from a) to b) can be achieved.

For the purpose of comparison, we state the yield condition and flow rule of v.
Mises for biaxial tension with the principal stresses o. , 0, and the principal strain rates
€ 4y €Em -

2 2 . 2
G — 00pm + 0y = 0,

€ _ 207 9 Gon e = sign (20, — o).

€m 20, — o,
SH. Tresca, Mémoires prés. par div. savants, 18, 733-799 (1868).

SW. Prager, On the use of singular yield conditions and associated flow rules, J. Appl. Mech. 20,
317-320 (1953).
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This yield condition and flow rule has the great advantage of being valid throughout
the entire range of biaxial tension, thus avoiding the necessity of discussing separate
cases such as a), b), ¢) above. On the other hand, each of these three cases has the advan-
tage that the values of two of the quantities o, , 0, , € , €, are known outright. This
fact is responsible for the considerable mathematical simplifications obtained by the
use of Tresca’s yield condition and the associated flow rule which was first pointed out
by Koiter.”

3. Kinematical considerations. It will be shown in Section 4 that the formation of a
spherical bulge of uniform thickness is compatible with Tresca’s yield condition and the
associated flow rule. In this section, the kinematical relations will be derived which
apply during the formation of such a bulge.

Figure 1 shows the circular meridian of the middle surface of the bulged sheet:
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O is the center, R the radius, and A a generic point of the meridian; P is the pole, and
E represents the edge. The angle POE will be denoted by 6 and the angle POA by .
Since the radius a of the die aperture is given and

R = a/sin 6, ' (1)

the considered stage of the deformation is conveniently specified by the parameter 6.
All “rates” used in the following are rates of change with respect to 6.

Denote by & the uniform sheet thickness in the bulged state and by A, that in the
undeformed state. Since the sheet material is assumed to be incompressible, it must
occupy equal volumina in both states. It follows from this condition that

h = ho cos® 22 . (2

The “strain rate” e, is thus given by

1dh 0
&= 10 -tang. 3):

W. T. Koiter, C. B. Biezeno Anniversary Volume, H. Stam, Haarlem, Holland, 1953, p. 232.
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Since the height of the bulge is

H = R(1 — cos §) = atan 4)

NI

we have
. = —H/a. _ ()]

Let r be the radius of the parallel circle through A and r, the radius of the correspond-
ing circle in the undeformed sheet. When the condition of incompressibility is applied,
not to the entire sheet but only to the portion which is bounded by the circle of radius
7, in the undeformed state and by the circle of radius 7 in the deformed state, the following
relation is obtained:

ho )1/2 0 oS 0/2
r ro< h , €08 5 = To oo /2 (6)
Now,
- _ ,Sing

r=Rsine Ao 7

Eliminating r between (6) and (7) and solving for r, we obtain
_ sing/2
To =007 82" (8)

For a given particle r, remains constant during the deformation. Differentiating (8)
with respect to 8 and using (6) and (8), we therefore obtain

deo - tan ¢/2 _ r: 9)
dé  tan 6/2 ar’ :

From (6) and (9) it is seen that the circumferential strain rate is given by

14 _ a 0 _ 2 ‘P]
€ = (log r) = [tm 5 cot 5 D) tan 5 (10)

From (3), (10), and the condition of incompressibility, the meridional strain rate is
then obtained as

e — e e MmO oot fam @
€n = —E€, e,.—z[ta.n2+cot2tan 2:|. (11)

The circumferential strain rate vanishes at the edge (¢ = =86); for relevant values of
0,say 0 < 8 < 7/2, and all values of ¢ between — 6 and 6, the strain rates (10) and (11)
are seen to be positive. The state of flow considered here therefore is of the type c),
and o, = 0, = 7.

4. Static considerations. If ¢, = 0, = o, the equilibrium of the assumed spherical
bulge of constant wall thickness under the applied pressure p requires that o has the
constant value

g

L pa
T 2k 2hysin 6 cos® 8/2 (12)
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in the entire bulge. This means that, at any given stage of the bulging, the entire material
is in the same state of hardening.
Consider first a perfectly plastic material that flows under the constant stress o, in
simple tension. We then have ¢ = ¢, = const., and hence, from (12),
_doohe . 6 58

a—Sm § COS3 5 . (13)

As 6 increases, the pressure (13) reaches the maximum value

3V/3 aoh
maxp = = (149)
when 6 = 60°. The considered spherical bulge of constant wall thickness is not stable
beyond this pressure maximum. When the pressure maximum is reached, h/h, = 3/4
according to (2). The logarithmic strain in the direction normal to the sheet therefore
is nearly —309%,.

Consider next a material that strain-hardens according to

c=o0l+a]| & (15)

in simple tension, & being the logarithmic strain, and ¢, and a being constants. The
considered state of stress in the bulged sheet has the principal values ¢, = 0, = o,
o, = 0; it may be obtained by the superposition of the state of balanced triaxial tension
6. = ¢, = 0, = o and the state of simple compression o, = ¢,, = 0, 6, = —o. The first
of these states of stress will not produce plastic flow or strain-hardening of the incompres-
sible material, the second may be assumed to produce strain hardening in accordance
with (15) provided that & in this formula is replaced by log (h/h,), where L/h, is given
by (2). Substituting

o= ao(l — 2a log cos g) (16)
1.8 —
' .4 /'ogb’/ RO° T
1 1.2 o /L'—’_-ﬂoo
m . e
'-6 // leoe
£1.0
< . +50°
o ‘ -— | Lo )

8 hg=cos-4 1a0°
S ,
» et
2. : o — 1+20°
.2 110°
0 2 4 a 6 8 1.0
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into (12) and solving for p, we obtain

_40'ohn< _ _o).g 5 0
p="F 1 — 2a log cos 5)sing cos’ 5 . (17)

Figure 2 shows the pressure maximum computed from (17) and the corresponding
values of 8, h/h, , and | 8 | = —log (h/h,), all versus the strain-hardening parameter a.
It is seen that the pressure maximum p.,. as well as the corresponding values of 6
and | £ | increase with «, whereas the ratio h/h, at the pressure maximum decreases
with «. In the considered range of « all these quantities vary with « in a nearly linear
manner.
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Mathematical methods for scienlists and engineers. By Lloyd P. Smith. Prentice-Hall, Inc.,
New York, 1953. x 4+ 453 pp. $10.00.

The material in this book is essentially that taught for a number of years by the author to graduate
students in physics and physical chemistry at Cornell University. The unusual feature of this text is
the wide range of mathematical methods treated. At the same time it will be found that the treatment
of the material is quite adequate for dealing with most physical problems. The discussion is consise
and clear.

There is no specific treatment of differential equations except as they arise in the treatment of the
other topics.

The reviewer believes that this is one of the most useful books available on intermediate and ad-
vanced mathematical methods.

The chapter headings of this text are as follows: Elements of Function Theory; Differential Calculus,
Integral Calculus; Space Geometry; Line, Surface, and Multiple Integrals; Theory of Functions of a
Complex Variable Residues and Complex Integration; Representation of Functions by Infinite Series
of Functions; Applications of Functions of a Complex Variable to Potential and Flow Problems; Algebra
of Linear Equations, Transformations and Quadratic Forms; Vector and Tensor Analysis; Orthonormal
Function Systems; Orthonormal Functions with a Continuous Spectrum; Integral Equations; Varia-
tional Methods; and Elements of Probability Theory.

' ‘ RonN TRUELL

Calculus of variations with applications to physics and engineering. By Robert Weinstock.
MecGraw-Hill Book Company, Inc., New York, 1952. x 4+ 326 pp. $6.50.

According to the preface, this volume presents an introduction to the calculus of variations followed
by application of the subject to problems of physics and theoretical engineering.

The first five chapters give the usual elementary treatment of the ealculus of variations with no
pretense of complete mathematical rigor. Chapters 6-12 present applications to dynamics, elasticity,
quantum mechanics, and electrostatics. These applications are, for the greater part, of an elementary
nature; modern problems in acoustics, electromagnetic theory, and quantum mechanics are not dis-
cussed.

Up to the present time there is no other volume in the English language that offers such a variety
of applications of the calculus of variations to problems in physics. The book must therefore be accepted
as a worthwhile contribution to the applied mathematician’s library.

This reviewer has a few adverse comments to make on the contents of the book; these are not in-



