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APPROXIMATE ANALYSIS OF STRUCTURES
IN THE PRESENCE OF MODERATELY LARGE CREEP DEFORMATIONS*

By
N. J. HOFF

Polytechnic Institute of Brooklyn

1. Introduction. When creep strains of the order of magnitude of one or two percent
develop during the lifetime of a structure, it is often permissible to disregard the primary
phase of the creep deformations and to base the analysis solely on the secondary or
steady phase of creep. For the metals used in structures the experimentally established
secondary creep law is generally given in the form

e,i = Kan , (1)
where en is the tensile strain rate caused by uniaxial tension in direction 1, <ru is the
corresponding tensile stress, and K and n are constants. When the creep strains are
large (of the order of magnitude of 0.01), the elastic deformations can often be neglected
in the calculations, as will be demonstrated by means of an example. Thus the limiting
state of stress and strain approached as the creep strain becomes large as compared to
the elastic strain can be determined on the basis of a simple non-linear stress-strain
rate law.

It is believed that structural analyses based on the assumptions stated are satisfactory
for supersonic guided missiles whose surface is heated to high temperatures by the air
flow. As guided missiles are generally used only for a single flight and not over long periods
of time like piloted airplanes, their structure can be permitted to undergo large permanent
deformations.

2. The elastic analogue. It will now be shown that the stress distribution in a body
whose deformations are governed by a generalized version of the non-linear creep law
of Eq. 1 is the same as that in a non-linear perfectly elastic body provided the elastic
stress-strain law and the boundary conditions are suitably chosen. Following Prager's
suggestions for the representation of the stress-strain laws of strain-hardening materials
[l]f, the uniaxial stress-strain rate law of Eq. 1 is generalized to read

E = f(J2 , J3)[p(J2 , J3)T + q(J2 , Ja)S'], (2)
where

T = S'2 - (2/3) J J, (2a)
E is the strain rate tensor, S' the stress deviation tensor, and I the identity tensor.
The typical component of the stress deviation tensor is defined as

s'n = Sn (l/3)sit5,-,- , (2b)
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and Sn is the typical component of the stress tensor. The first invariant of the stress
deviation naturally vanishes:

Ji - s', = 0. (3a)

The second and third invariants are defined as

J2 = (l/2KsS,. , (3b)
J3 ~~ (l/3)s',s'is£i . (3c)

In Eq. 2 the symbols p(J2, J3) and q(J2, J3) denote polynomial functions, and /(J2, J3)
an arbitrary function of J2 and J3 . These functions must be determined from empirical
data to be obtained from creep tests. Eq. 2 is meant for use only when the strain is
small as compared to unity (say 0.01); under such conditions it implies that the creep
deformations are inextensional (eu = 0).

If a body which follows this stress-strain rate law is subjected to given body forces
<Pi(x, t), (where x is understood to represent the three Cartesian coordinates of space)
and to given surface tractions T,(.t, t) on a portion Sx of its surface while the points
on the remainder S2 of the surface are slowly displaced with given velocities F,(x, i)
(so slowly that the resulting inertia forces are small as compared to the forces corres-
ponding to the stresses S and surface tractions T), at a generic instant t the stress field
Sii{x, t) and the velocity field Vi(x, t) throughout the body must satisfy the following
equations:

(dSu/dXj) + (f>i = 0, (4)

(dVi/dXj) + (dVi/dxt) = 2f(J2 , J3)[p(J2 , J3)Ui + q(J2 , J3)sS,-]. (5)

The three equilibrium equations (4) and the six stress-strain rate equations (5), together
with the boundary conditions

Si,n,- = Ti on <S, , (6a)

Vi = Vi on S2 , (6b)

define the stress and velocity fields in the body.
The analoguous perfectly elastic body is required to follow the stress-strain law

E* = f(J2 , J3)[p(J2 , J3)T + q(J2 , J3)S'] (7)
in which the only new symbol, E*, represents the strain tensor whose typical component
is en . The body forces and the surface tractions are kept unchanged but the velocities
Vi(x, t) prescribed on surface S2 are replaced by displacements Ui(x, t) equal to V^x, t)
in magnitude and direction. Under these conditions the displacement field «,■(x, t) and
the stress field s,;(x, i) in the elastic body are defined by Eqs. 4 to 6 if i>,-(z, t) is replaced
by Ui(x, t) and Vi(x, t) by Ui(x, t). Consequently to any solution of the elastic problem
there corresponds a solution of the creep problem and the stress distribution is the same
in the two solutions.

Similar results were published earlier for linear visco-elastic materials by Alfrey
[2] and Tsien [3].

3. Pin-jointed truss. As an example for the use of the analogue the stresses will now
be calculated in the bars of the pin-jointed framework shown in Fig. 1. One end of each
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Fig. 1. Pin-Jointed Framework

bar is attached to a rigid wall. Bar 0-3, which is in compression when the load W is
applied to joint 0, is assumed to be perfectly rigid and braced in the direction perpen-
dicular to the plane of the truss so as to prevent its buckling. The material of the other
two bars is subject to creep in accordance with the law

e = (*A)". (8)

where e is the rate of creep in uniaxial tension, a the tensile stress, and X and n are con-
stants. Because of the analogue the creep problem can be replaced by a problem in
non-linear elasticity with the stress-strain law.

* = (<r/X)", (9)

where e is the tensile strain.
It might be mentioned here that the behavior of pin-jointed structures was investi-

gated by Meacham [4] on the assumption of a linear creep law.
3a. Load W prescribed. When the load W is prescribed, the stress distribution can

be calculated from the requirement that the complementary energy stored in the bars
must be a minimum. If the force in bar 0-2 is designated as X, it follows from the con-
ditions of equilibrium that the forces in the three bars are

Fo-i = (V5/2)W - (a/10/4)X, F„_2 = X, Fa.3 = -(1/2)17 - (V5/4)X (10)

As the complementary energy per unit volume (U'/V) is defined as

(£777) = f e da, (11)
Jo

substitution from Eq. 9 and integration yield

(U'/V) = [X/(n + DJOr/Xr1. (12)
With A designating the common cross-sectional area of the two elastic bars, the strain
energy stored in the system becomes

V = [(n + l)<rXMTl{ V5[(V5/2)W - (VlO/4)X]"+1 + V2Xn+1}. (13)
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In accordance with the complementary energy principle the differential coefficient of
V with respect to X must vanish. After some manipulations this requirement can be
written in the form

(X/W) = (V5/2) [(4/5)1/n + (VT0/4)]-1. (14)
After (X/W) is computed from Eq. 14 for any given n, the values of F0_i and F0-2 can
be calculated from Eqs. 10. The results of such computations are plotted in Fig. 2.
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Fig. 2. Forces in Bars of Pin-Jointed Framework

When n — 1, the linear elastic solution is obtained; and when » —► », the solution
corresponds to the principles of limit analysis.

3b. Velocity V0 prescribed. If the velocity V„ of joint 0 is prescribed in the creep
problem rather than the load W, in the analogous elastic problem the elastic displacement
U0 of joint 0 must be given. The potential V of the unknown reaction force R at 0 is

— V'= RU0 (15)

with both R and U0 considered positive when directed downward. The forces in the
bars caused by the unknown reaction R can be calculated from Eqs. 10 if W is replaced
by R. The complementary energy can be obtained in a similar manner from Eq. 13.
The compatibility conditions are in this case

d(U' + V')/dX = 0, (16a)

3(17' + V')/dR = 0. (16b)

As a consequence of the first of these equations Eq. 14 again holds provided W is replaced
by R. It follows from the second equation that

(R/A) = (2/\/5)[(4/5)1/" + (Vi0/4)]X(C7„/2a)1/n. (17)
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3c. More accurate solution of the creep problem. The problem just discussed is so
simple that it could have been solved on the basis of geometric considerations of the
deformations without recourse to energy methods. For the same reason it can also be
analyzed in the case when the deformations are governed by a more complex creep law
than the one represented by Eq. 8. Such a more complete analysis will now be presented
in order to show that the initial (linear) elastic stress distribution in an actual structure
is rapidly replaced by a distribution that, for all practical purposes, is identical with
the stress distribution derived from the (non-linear) elastic analogue.

The creep law will be assumed as

e = (l/E)(da/dt) + (<r/X)n, (18)

where t is time. If e, is the strain rate in bar 0-1, the rate of elongation dALl/dt in the
bar is

dALj/dt = V5 ae, . (19a)
Similarly in bar 0-2

dAL2/dt = \/2 ae2 . (19b)

Thd geometric condition imposed upon these deformations can be derived from Fig. 3.

al,

Fig. 3. Displacement of Joint 0

When the length of bar 0-1 is increased from Lx to Lx + ALx the length of bar 0-3
remains L3 because this bar was assumed to be perfectly rigid. The new position of
joint 0 can then be found by drawing an arc of a circle from point 1 with a
radius Lx + ALx , a second arc of a circle from point 3 with a radius L3 , and by deter-
mining the point of intersection of the two arcs. When the deformations are small, the
arcs of circles can be replaced by straight line segments perpendicular to the original
directions of bars 0-1 and 0-3, respectively. This was done in the figure and the vertical
displacement A of joint 0 was obtained as

A = (V5/2)ALX . (20a)
The same vertical displacement must result if the geometric construction is carried out
for bar 0-2. Hence

A = \/2 AL2 . (20b)
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When these two equations are differentiated with respect to time and their right-hand
members are equated to each other, the following condition is obtained:

(\/5/2) dALJdt = \/2 dAL2/dt. (21)

Substitutions from Eqs. 18 and 19 yield

(5/4) [(1 /EXdaJdt) + (o-j/X)"] = (1 /E)(da2/dt) + (<r2/X)\ (22)
When the load W is prescribed at joint 0, equilibrium requires that

(W/A) = (2/ a/5)a-! + (l/\/2>2 . (23)

Solution of this equation for tr2 , substitution in Eq. 22, and manipulations result in the
differential equation

(dx/dt) = X[(l - bx)n - (cz)n], (24)
where

x = (A oJW), b = (4/5)I/2, c = (5/4)v"(l/2),/2,
(25)

K - [!2n/\W/A\y~\E/\)]/[([5/4) + (8/5)I/2].

After separation of the variables and integration the following solution is obtained:

t = (1 /K) £ dx/[(1 - bx)n - (cx)"]. (26)

A numerical example was worked out in which the material of the bars was 52S-H38
alluminum alloy. At 400°F the material constants can be taken as n = 5,

X = 25,000 hr.I/5 Ib.persq. in.

on the basis of creep tests carried out by Dorn and Tietz [5]. From Table 3.1211(b) in
ANC-5 [6] Young's modulus can be estimated as 9 X 106 lb. per sq. in. With these
values one obtains K = 487 per hour if the load is assumed to be 22,000 lbs. The load
is applied at t = 0 and dynamic effects are disregarded. Initially the fully (linearly)
elastic solution must prevail; correspondingly x = 0.56233 when 4 = 0. The state of
fully developed creep is reached only as t approaches infinity; then, in the limit,
x = 0.61206. Evaluation of the integral in Eq. 26 yielded corresponding values of x
and t which were plotted in Fig. 4. It can be seen from the figure that after the lapse of
about 70 sec. x is 0.61 which is only one-third of one percent less than the fully developed
creep value 0.61206; (the difference between 0.61 and 0.61206 is about four percent of
the difference between the elastic and the fully developed creep values). As the highest
stress in any bar is about 15,000 lb. per sq. in. (in bar 0-2 at t = 0), the maximum creep
rate is about 0.0777 per hour. Hence the total creep strain developed in bar 0-2 in the
first 70 sec. after the load is applied is less than 0.00151. This should be compared with
the maximum elastic strain in the bar which is 0.00167.

Thus the conclusion is reached that in this problem in good approximation the state
of fully developed creep is reached at a time when the creep strain is about equal to
the elastic strain. The effect of the elastic stresses can therefore be neglected when the
state of stress and strain is investigated at moderately large creep deformations (at
creep strains of the order of magnitude of 0.01).
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Fig. 4. Variation in Non-dimensional Force in Bar 0 — 1 with Time

Finally it is of interest to check whether the time interval of 70 sec. is short as com-
pared to the time needed for the necking and rupture of the most highly loaded bar.
In an earlier paper [7] the author derived the formula

tcr = (l/n)/(*oA)", (27)

where tCT is the time needed for rupture and a0 is the engineering stress at the beginning
of the creep test. It is reasonable to take <x0 = 14,100 lb. per sq. in. corresponding to
the fully developed state of creep in bar 0-2. With this value one obtains tcr = 3.55 hours.
Thus there is a long period of time during which the fully developed creep solution is
valid.
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