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difficult, and probably not possible, to express f as the sum of a finite number of terms
for each of which we can use (3).

STRESS FUNCTIONS OF MAXWELL AND MORERA*
By WILHELM ORNSTEIN (Newark College of Engineering)

Summary. A systematic process is devised for the derivation of the stress functions
of Maxwell and Morera by the application of the theorem that a vector whose divergence
vanishes is solenoidal. Symmetric and anti-symmetric matrices are established, and
the elements of these matrices represent the stress functions of Maxwell and Morera
respectively.

Introduction. The procedure used by Maxwell1 to derive three stress functions
representing six stress components at any point of an isotropic body is similar to that
which Morera2 subsequently applied to the establishment of the corresponding stress
functions. This procedure described also by Love3 consisted in the choice of three stress
components; then the substitution of these components into the equilibrium equation
led to the remaining three components necessary to satisfy the equations of equilibrium.
Later it was discovered by Sir Richard Southwell4 that Saint Venant's and Beltrami's
compatibility equations follow from Castigliano's principle when the strain energy is
expressed in terms of Maxwell's and of Morera's functions.

Derivations. Neglecting the body forces, the equation of equilibrium is

div T = 0, (1)
where T is the stress tensor. The three equations of equilibrium are obtained by cyclic
interchange of x, y, z in the equation

aa ^ _ o (2)
dx dy dz

The equations of equilibrium (2) can be written as

div A = 0, div 5 = 0, div C = 0 (3)
where, because of the theorem that a vector whose divergence vanishes is a solenoidal
vector, the following relations exist:

A = curl F, B = curl G, C = curl H. (4)

Consequently, the stress components may be written as follows:

Y dF3 dF2 „ dFj dF3 Y dF2 dFx

*Received September 2, 1953.
1C. Maxwell, Edinburgh Royal Soe. Trans. 26 (1870).
2G. Morera, Roma, Acc. Lincei Rend. (5) 1 (1892).
3A. E. H. Love, A treatise on the mathematical theory of elasticity, Fourth Edition, 1927, p. 88.
4R. Y. Southwell, Proc. Roy. Soc. (A) 154 (1925). R. V. Southwell, Timoshenko Anniversary Volume,
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yr = ^3 _ dG* Yv = — - — Vz = — - — ■ (S)
dy dz ' dz dx ' dx dy '

„ dH3 dH2 ry dHi dH3 „ dH2 dHx
Zx = -d^-~te> Zy==-te-~te> =

Upon substituting (5) into the equilibrium conditions

Xy = Yx; Xz = Zx; Yz = Zy (6)

and introducing, for abbreviation, the symbol T = Fi + G2 + H3 , the following equa-
tions are obtained:

dF3 dG3 d(H3 - D =
dx ^ dy ^ dz

dF, d(G2 - D dff, _
dx dy "1~ dz ' 1'

d(Fl - D , dGi djh _
dx dy + dz

Equations (7), in the same manner as Eqs. (2), can be expressed as before: when the
divergence of some vector is equal to zero, that vector is solenoidal. Thus the following
expressions can be written:

p   p _ dU3   dU2 p _ dUi   dU3 J. _ dU2   dUj <
1 dy dz ' 1 ~ dz dx ' 1 ~ dx dy '

w - - ^-2 r — v - _ ^2 h - _ Oh .
2 dy dz ' 2 dz dx ' 2 dx dy ' ^

1P_dW3_dW1 r tt r aw* dW<
3 dy dz ' 3 dz dx ' 3 dx dy

To evaluate the expression T, the three terms on the diagonal of Eqs. (8) are added:

Fx + G2 + H3 - 3r = -2r
from which

r - ~ l£w-~ r-> ~ \fru' - - 55(f' - £,')' (9)
Upon substitution of (9) into (8) the following relations are obtained:

^ ~ &Jt - V3) -\^U3 - TFO - - 17,),

G^dJt-dii-\ix^- - w* -\h<r> - u*> w

«3 = ^-a~w~~ Fs) ~^y{U3 ~ Wl) ~i^(Fl" u

Now, by use of (8) and (10) the stresses in (5) can be determined as follows:

vr _ d*W* , d2V2 _ d2
dy2 dz2 dy dz ^ 2 ^ ^
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v d2U1 . d2W3 d2 ,TT , Trr,
y dz2 dx2 dx dz^ ^ ^

_ d2F2 a2t/, d2 , I tt\ . o\
- ax2 + W ~ tedy( 1 + 2)' v }

= 1 _ 1 c?U2 _ d2W3 1 tfWj, 1 d^Vj_ 1 d^Vr _ 1 d2V,
^ 2 dy dz 2 dz2 dx dy 2 dx dz 2 dz dx 2 dy dz 2 dz2

= ll\- iiv, + u2) +£-{w2+ v3) + ^.(u3 + if,)} -2 dz { dzK 1 z/ 1 dx v 2 ' 3y 1 ay v 3 UJ 3a: dy '

„ i a2(t/2 + Fi) l a2(iF2 + f.) i d\y3 + TF.) d2w3 ,1.,
V 2 a*2 + 2 dxdz + 2 ay a2 dx dy ' ( ^

In a similar way one obtains

1 a2(TFt + u3) l d\w2 + f3) l a2(F. + t/2) a2F2
2 ay2 + 2 ay az + 2 dx dy dx dz' ( 5)

ld2(W2+V3) , Id\u, + Wd , 1 a2(Fj + ua) a2TF, ,in
Fz = Zy= -- i? +2 ax ay +2~^a^ a^ • (16)
The normal and tangential stress components expressed by Eqs. (11) to (16) are
determined by the elements of a square matrix, which can be written as follows:

Ul U2 U3

F, . F2 F3 (17)

Wi w2 w3

when all the elements except those on the diagonal are set equal to zero; i.e., when

U2 = U3 = F, « F* = W1 = W2 = 0

and when

Ui = xi , F2 = X2 , W3 = x3

there is a symmetric, or diagonal, matrix, whose elements form the Maxwell stress
functions. With these elements the stress components are obtained from equations (11)
to (16) as follows:

52 a2 »v2X3 , axg v _ d_Xi djCs
dy2 + dz2 ' y dz2 + dx2

d2 «\2 «v2 X? , oja „ _ v _ a xa ,. Q.
M - dx2 + ay2 ' Xy - Yx - dxdy, (18)

Yz = Zy = -pf , Xz = Zx= - ~f-.dydz dz dx

When the diagonal elements of the Matrix (17) are set equal to zero; i.e., when

U, = V2 = W3 = 0
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and when
W2 + V3 = -h

U3 + TFj = —\p2

Vl + U2 = — ̂ 3

the matrix is anti-symmetric, and its elements represent the Morera stress-functions
which when substituted into Eqs. (11) to (16) yield the following stress components:

= Vv = ^- Zz = ^dy dz ' y dzdx' dxdy'

Xv = Yx = - - — 4- ^ - —)V 2 dz \ dx + dy dz )'
(19)

Xz = Zx = - -- - — + — J,

y,  7,.  11/ , W* a&N
Yz~ ZV~ ~ 2dz\- dx + dy + aj-

Thus, the stress tensor expressed by Maxwell and Morera functions was derived by a
direct method from diagonal and antisymmetric matrices.

A REMARK ON INTEGRAL INVARIANTS*
By H. D. BLOCK (University of Minnesota)

Let the 2n variables Qi , q? , • • • , ?», Pi , p2 , * ■ • , P» be related to the 2n variables
Qi , Q2 , • • • , Qn , P\ , P2 , ■ • • , Pn by a canonical transformation. Let <7 be the unit
square: O^uSl.O^i^l, and let q{ = /,(w, v), = {/,(«, d), (i = 1, 2, • ■ • , n),
where /,• and g{ have continuous derivatives on a. This induces the relationships Qt = F<
(u, v), P{ - Gi(u, v), (i = 1, 2, • • • , n). Let s, = U<u..>tT (/<(«, v), g^u, v)) and S{ =

(F,(w, v), Gi(u, v)), i.e. the maps of a on the (gv , p<) and (Q< , P.) planes re-
spectively. Let

1i JJ and ij If dQi dP,
ti Si

be denoted respectively by

JJ E and JJ 23 •
« s

It is widely1 believed that under the conditions stated

JJ D <*9.- = JJ E dQ. dPi .
•Received Oct. 28, 1953.
1Cf. e.g. Goldstein Classical Mechanics, Addison Wesley, 1950, pp. 247-250. Also Corben and

Stehle Classical Mechanics, Wiley, 1950, pp. 292-3.


