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DISTRIBUTION OF THE EXTREME VALUES OF THE SUM OF n
SINE WAVES PHASED AT RANDOM*

BY

S. O. RICE
Bell Telephone Laboratories, Inc., New York

1. Introduction. The statistical behavior of the sum of n sine waves phased at
random has been studied in connection with a number of technical problems. These
include radio wave fading and overloading in multichannel telephony.1

When the sine waves are of unit amplitude their sum may be written as

n

0 = COS <p„ (1.1)
to = 1

where <Pi , <p2 , ■ ■ • , <pn are independent random angles, each distributed uniformly over
the range — x to ir. z cannot exceed n. When n — 2 < z < n the probability density
of z may be expressed as a power series in (n — z), as is shown in Sec. 2.

There is a close relation between the distribution of z and the problem of the random
walk in two dimensions, and the two are often treated together. Several equations
connecting them are given in Sec. 3. In Sec. 4 the results of Sec. 2 are used to obtain
the first few terms in a series for the distribution of the extreme values in the random
walk problem.

When n is large the central portion of the distribution for z approaches a normal law.
In Sec. 5 an attempt is made to obtain an approximation to the distribution over the
entire range of z by interpolating between the normal law result for small z and the
results of Sec. 2 which hold for extreme values of z. The work is carried out first for the
random walk distribution and then translated to the z distribution. This procedure is
used because the random walk distribution seems to be better suited to our method of
interpolation than does the z distribution. Figure 1 is associated with the interpolation
between the results given by Pearson2 and Rayleigh3 for the random walk and those of
Sec. 4.

I wish to express my thanks for the many helpful suggestions concerning this paper
which I have received from Mr. John Riordan and others.

2. Series for the probability density of z when z is near n. Let qn{z) denote the
probability density of the random variable z defined by (1.1). Then, when n — 1 <

*Received Jan. 27, 1954.
1See, for instance, W. R. Bennett, Distribution of the sum of randomly phased components, Quarterly

Appl. Math. 5, 385-393 (Jan. 1948). References to earlier work will be found in this paper. Mention
should also be made of papers by F. Horner, Phil. Mag. (7) 37, 145-162 (1946), and R. D. Lord, Phil.
Mag. (7) 39, 66-71 (1948). The second paper gives our equation (3.5).

2Drapers' Co. Research Memoirs Biometric Series III. Math. Contributions to the theory of evolution—
XV. A mathematical theory of random migration, Karl Pearson assisted by John Blakeman, London
(1906).

'Rayleigh, Phil. Mag. 10, 73 (1880) and Phil. Mag. 37, 321-347 (1919).
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z < n + 1,

g»+i(z) = / qi(z — u)qju) du
J 2-1

= - f [1 - (z — ti)2]-,/J?„(«) rfM. (2.1)
7T J2_i

The change of variables

x = n + 1 — z, u = z — 1 vx

carries (2.1) into

q„+,(n + 1 — x) = ——— [ [i>(l — vx/2)]~U2qn[n - (1 - v)x] dv (2.2)
7T J o

which holds when 0 < x <2. When we place the assumed expansion

qn(n - x) = Anx"/2 1

in (2.2) and use

1 + S a„k(x/4:)k/n(n + 2) • • • (n + 2k — 2)
k-l J

(2.3)

?i(2) = — x) = t '[2x — x2] 1/2 (2.4)

we obtain
An = (2ir)~n/2/T(n/2) (2.5)

and a set of recurrence relations, the Zth of which is
I

an+i,i = ^2 anJ-.hal/k\, I = 0, 1, 2, ••• , (2.6)
A = 0

where a„0 = 1, a0 = 1 and

ak = 1-3-5 ••• (27c - 1).

The series in (2.3) converges for | x | < 2 as may be seen by substituting q„(n — x) =
x'1+"/2/„(x), fi(x) = t~1(2 — x)~1/2 in (2.2). An integral is obtained which may be
used to show in succession that /2(x), f3(x), ■ ■ ■ fjx) are analytic functions of x inside
the circle | x | = R, R < 2, in the complex z-plane.

Equations (2.6) and alk = a\/k\ lead to

t anks> = \ ± ctf/jl
k=o L y-o

(2.7)

This is merely a formal result because the series on the right does not converge.
It is interesting to note that (2.7) fits in with some heuristic manipulation of the

integral

qn{z) = ^ f_Ji"[J0{t)]n dt. (2.8)

Thus if we raise the asymptotic expression
itoo -1/2 2

Jo(i) ~ Z " a"
mW" ■~2 + <-i2tr+i/2\ (2-9)\_{i2t)m+1/2 1 (-
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(where — ir < argt < x and arg (—t) = — x/2) to the nth power we obtain the sum
of terms of the form exp i(n — 21) t times a series in 1/t with I = 0, 1, • • • n. Let the
i-plane be cut along the negative real t axis and let the limits of integration in (2.8) be
—i ± oo instead of ± <*>. When we substitute (2.9) in (2.8), assume n — 2 < z < n,
and use

ri+° eix' ^ .
/  dt = —=rrr~, x > 0J-*— (it)' r(»)

0, x < 0

only the terms multiplied by exp [i(n — z)t] (corresponding to I = 0, x = n — z) contri-
bute to the value of the integral. Furthermore, they lead to the same series in x for
qn(n — a:) as does (2.7). If this procedure could be justified and generalized it might
lead to an expression for (2.8) which would supplement the one obtained by the method
used by W. R. Bennett.1

The coefficients ank may be expressed in terms of Bell's Y polynomials.* Thus,
multiplying both sides of (2.7) by t"/n\ and summing n from 0 to <» shows that ank is
the coefficient of t"sk/n\ in

[exp <]^exp X (*«? jj) = «' S fj , ta2 , • • • , tak)

where the Yk(yx , y2 ■ ■ ■ yk) are Bell's polynomials:

70 = 1, Yt = J/i , F2 = 2/2 + y\ , Ya = y3 + 3y2yx + y\ , • • • .

Consequently,

ank = |j Yk{ta\ , tal , • • • , tod), (2.10)

where, after writing the right hand side as a polynomial in t, t'" is replaced by l/(n — m)!.
We obtain in this way

o (n x) - (x/2t)"/2'1 fl | x I (n + 8)* I (n2 + 24,1 + 200^3 | ...1 (2 11)
qn{n x) 2xr(in) [_ 4 + 32 (n + 2) + 384(n + 2 )(n + 4) + J'

where the series converges when 0 < x < 2.
The probability ^(E) that \ z \ > E is given by

/»n— E

qn{z) dz — 2 \ q„(n — x) dx (2.12)
E J 0

and when n — 2 < E < n this leads to

<rf(E)= 2 U - El"'r »(» - E) n(n + 8)(» - Ef 1
n( } r[i(n + 2)] L 2X J L + 4(n + 2) + 32(n + 2)(n + 4) + J" (2'13)

*Actually what is used is the slightly more general version of these polynomials given by John
Riordan, Derivatives of composite functions, Bull. Amer. Math. Soc. 52, 664-667 (1946).
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3. Relation between z and the problem of the random walk. The random variable z,
defined as the sum of n cosines by (1.1), may be regarded as the projection of the resultant
r (of n unit random vectors) on the z-axis. Hence, we may write z — r cos 6 where 9 is
a random angle distributed uniformly over the interval (0, 2tt). The probability pn(r) dr
that the length of the resultant lies between r and r + dr is given by the random walk
distribution when the n elementary linear walks are of unit length each. We shall use
<$„(?•) to denote the probability that the resultant equals or exceeds r. Then the connec-
tion between z and r leads to the following relations between the probability functions:

SE'nCE) = - f p„(r) arc cos (E/r) dr, (3.1)
7T J e

*„(£) = — f r~\r - ETU2^(r) dr, (3.2)
7T JE

*.(r) = -r £ J" (E2 - rY1/2*JE) dE, (3.3)

$„(r) = r' J" E~\E2 - r2)-'/2[E~'^n(E) - *;(£)] dE, (3.4)

qn(z) = - f (r - z2)-/2p„(r) dr, (3.5)
7T J g

pn(r) = -2r J" (z2 - r2yU2[dqn(z)/dz] dz. (3.6)

In these equations E, r and z are assumed to be less than n and Pi(r) is to be inter-
preted as an impulse function. In (3.6) n must exceed two but this causes no difficulty
since it is known that

p2(r) = (2/t)(4 - r2)~U2, -2 < r < 2. (3.7)

In going from (3.1) to (3.2) we have integrated by parts. Setting n2 — r2 = £, n2 — E2 = x
in (3.2) converts it to a special case of Abel's integral equation* whose solution gives
(3.3). The remaining equations are obtained by the same kind of analysis.

4. Random walk distributions when r is near n. When n > 2 and n — 2 < r < n,
substitution of the expression (2.11) for qn(z) in the integral (3.6) for the probability
density p„(r) of r gives

" 2rr[Kn - 1)] IV
(n—3)/2 (n - l)(n - r)

. ^ An

+ ("'+ -J>(" - +■■■]. (4.1)
When n — 2 the method fails, but it is not difficult to show from (3.7) that (4.1) also
holds in this case. Expression (4.1) may also be obtained from the recurrence relation
for p„(r) by a method similar to that used in Sec. 2 to obtain qn(n — x). Pearson2 has

*See, for example, Whittaker and Watson, Modern analysis, 4th ed., Cambridge, 1927, p. 229.
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given, essentially, the leading term in (4.1) and has given one or two more terms for
n = 3, 4, 5, 6.

Integrating (4.1) termwise gives

T m r i \ i nl/2 Tn - rT-1)Ti i - '■)= I p-(p) dp = r»(n +1)] L^rJ L1 + 4 n(n + 1)

S2n(n + 3) ~
+ (n"B'-+,4""9) ("-■■)'+ -•] <«>

which holds for n — 2 < r < n.
5. Approximations for <£„(r) and ^n(E). Numerical values of the various proba-

bility densities and distributions have been given by Pearson2, Slack4, Bennett1 and
others for values of n up to 10 (and somewhat beyond in certain cases.) The values of
$„(r) and ^n(E) given by Bennett were computed from series which converge for all
values of r and E between zero and n. In this section we shall consider a method of
estimating values of <J?„(r) and which involves only a small amount of calculation
but which, of course, lacks the accuracy of the computations mentioned above.

When n is large, but E and r of moderate size, it is known that

$»(r) = exp (—r2/n), (5.1)

*„(£) = 1 - erf (E/nU2), (5.2)

erf (x) = 2tt 1/2 f exp ( — x2) dx.
Jo

Our method of estimation is roughly equivalent to interpolating between values given
by these formulas and those given by the formulas of Sec. 2 and 4. We shall first work
with the random walk distribution.

Equation (5.1) suggests that we introduce a function y of r and n defined by

<£>„« = e~ny (5.3)

or

y = -- log $„(r). (5.4)
fl

Comparison of (5.1) and (5.3) shows that, for small values of r/n, y ~ (r/n)2 and hence
in this case y depends "much more" on r/n than on n. The same is true when r/n is
nearly unity since Eq. (4.2) for $n(r) leads to (assuming n large so that the series may be
approximated by exp [(n — r)/4])

n
y = — 2 n il°s(1-5-3(1-»r) + l1<' <5'5>

and this again tends to become a function of r/n only as n —* <».
In order to test the dependence of y on r/n, Bennett's values of $„(r) for n = 6 and

10 were used to compute y from (5.4). The results are plotted as the "exact" values of y

^Margaret Slack, The probability distributions of sinusoidal oscillations combined in random phase,
J.I.E.E., Pt. Ill, 93, 76-86 (1946).
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(indicated by the small triangles and circles) shown in Fig. 1. It is seen that the two
sets of values tend to follow a common curve.

The dashed curves in Fig. 1 were computed from the approximation (5.5) for n = 6,10
and oo. Although (5.5) is valid only for r/n ~ 1, it yields values of y which are fairly

EQUATION (5.5) /
VALtD FOR r/n«i / /
EQUATION (5.6)
VALID FOR r/n SMALL

O 0.2 0.4 0.6

Fig. 1. The triangles (re = 6) and the circles (n — 10) show exact values of y — ( —1/n) log, $>„ (r).
<S>„ (r) is the probability that the resultant of n random two-dimensional unit vectors is longer than r.

The curves show the approximations (5.5) and (5.6) for n = 6, 10, and co.

close to the exact values even for values of r/n as small as 0.4. The solid curves were
computed from

T 4 \n) T 36 W n

which holds only for small values of r/n and large values of n. Expression (5.6) is obtained

l(n) +!(n). + IS? ©* <5®
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from

T / \ J\ /, 2/2 , (Cm - 11)/,*-(r) =e L1" ^ ~ 3^ + —— + (5.7)

where x = r2/n and

/m = —XiFa( —m; 2; 1) = -x + a;2 - ^ ^ + • • • ,

rF,( ) being a confluent hypergeometric function. Expression (5.7) may be obtained
by integrating a result given by Pearson2 and, later, by Rayleigh3. Pearson's formula
suggests that the next two terms in (5.7) ax-e + (50n — 57)/4/15w4 — (270n2 — 2125n +
1892)/5/144n5.

Thus, a rough idea of how $n(r) behaves for all values of r/n and a particular value
of n may be obtained by (i) computing approximations to y from (5.5) and (5.6),*
(ii) plotting them on semi-log paper as shown in Fig. 1, (iii) joining the two portions
by a smooth curve, and (iv) using these approximate values of y to compute <3>„(r)
from (5.3).

When we turn to ^„(jE), the procedure used in dealing with <J>„(r) suggests that a
new function y' of E and n be defined by

*„(£) = 1 - erf [(ny'Y'*]. (5.8)
However, it is found that the expression for y' when E/n ~ 1 does not have the sim-
plicity of its analogue (5.5). Instead of following this line of thought further, we note
that the analogy between y and y' suggests that y' should not differ greatly from the
function obtained by replacing r by E in y. That the difference is small may be verified
by comparing Bennett's exact values of ~fyw(E) with approximate ones obtained from
(5.8). In using (5.8), the values of y' are taken to be those of y as computed from (5.4)
and Bennett's exact values of $l0('''). The exact and approximate values are shown in
the following table for three values of E.

E exact ^r10(E) approx. ^10(.E)
1 .6604 .6624
5 .02337 .02440
8 .00009 .00011

Thus, once we have obtained approximate values of y from curves of the type shown
in Fig. 1, approximate values of $„(r) and \f\{E) may be obtained readily from (5.3)
and (5.8) (with y in place of y').

"Instead of (5.6) one may use (5.7) and (5.4). This gives more accurate values of y at the cost of
more computation.


