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ON THE DEFORMATION OF ELASTIC SHELLS OF REVOLUTION*

BY
P. M. NAGHDI anp C. NEVIN Dk SILVA

Department of Engineering Mechanics, University of Michigan

1. Introduction. In a recent paper, E. Reissner (1] formulated a theory for finite
deformation of elastic isotropic shells of revolution where the theory of small deforma-
tion (linear theory) is also discussed. In the present note, there is derived a single complex
differential equation for small deformation of shells of revolution which is valid for
uniform thickness, as well as for a large class of variable thickness.

z

Fic. 1

With the use of cylindrical coordinates r, 6, z, the parametric equation of the middle
surface of the shell (see Fig. 1) may be represented by

r=r@®, z=2z0%. (1.1)
Denoting by ¢ the inclination of the tangent to the meridian of the shell, then

" = a cos ¢, 2’ = asin ¢, 1.2)
where
a=[") + &)1 (1.3)
and prime denotes differentiation with respect to &.
We note for future reference that the principal radii of curvature r, and r, are, re-
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spectively, the radius of the curvature of the curve generating the middle surface and
the length of the normal intercepted between this curve (generating curve) and the axis
of rotation. It follows from the geometry of the middle surface that

r = r,8in ¢. 1.4)

The stress resultants N; , Ny and @, and the stress couples M; and M, , acting on an
element of the shell, are shown in Fig. 1. Also, as in [1], it is convenient to introduce
“horizontal” and “vertical” stress resultants, H and V, given by

aN, =1H + 2'V, aQ = —2z’H +1r'V. , (1.5)

We now record the basic equations of the small deflection theory of elastic shells of
revolution with axisymmetric loading, as given by Reissner in [1].

S

aN, = (rH)’ + ropu ,
rN; = (rH) cos ¢ + (rV) sin ¢,
Q = —(rH) sin ¢ + (rV) cos ¢,

M, = S[ﬁ' +v";'ﬁ], (1.6)

D [’—'1/3 + vﬁ'],
o r

U = ]_;;—L(Ng - VN;),

M,

It

w = f [% (N, — wNy) — r'a] dg,

where g is the negative change in ¢ due to deformation; v and w are the components of
displacement in the radial and axjal directions; py and p, denote the components of
load intensity in r and z directions; & is the thickness of the shell; and
, __EW
C = En, D = B =) (%))

E and » being Young’s modulus and Poisson’s ratio, respectively.

With 8 and rH as basic variables, proper -elimination between Egs. (1.6), differential
equations of equilibrium and compatibility, leads to the following two second-order
differential equations:

v @D/ o LN ('D/e) |, 2 ,
it (rD/a) B - [<r> "D/ ]B + D/a) (rH) = (rD/ ) e, (1.8
(rH)"" + (r.ﬁQ_ GH) — [(_) + (' /aC)’ ](TH)

r/eC) -/aC)
2 o[z @/e0) N
(T/QC) B [ + (r/aC) :l( V) + yZ ( V) (1.9)
B [%— + ;j‘:|(rap,,) — (rapy)’.
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2. Normal form of the differential equations. Substitution of the quantities C
and D from (1.7) into (1.8) and (1.9) and rearrangement of terms result in

o+ [ 4268 22 - 2B e

Tolg Tohg
(r' Ja)! (r’'h’) am (hy
L ‘”[ /ey T3 ]‘” r,ho< )‘3
(2.2)
X (r'h) (r/a)’ W
+2[ ey +<r/a>h]‘” 2 5

where Z denotes the right-hand side of (1.9), h, is the value of h at some reference section
(say £ = &), and

n( )=+ |8 4 52, (O,

H 1
V=T mo= (1201 ="

2.3

In (2.1) and (2.2), let
L = %), 2.4)

where u is constant and it is to be noted that f(¢) is independent of the thickness h().
Then, multiplication throughout (2.1) and (2.2) by {A[hef(£)]"*} results in

L) + v\8 + 24’y = F, (2.5)
L(y) — O\ — )y — 24°8 = G, (2.6)

where

)=t Lo,

- [ f(z)]_’{‘r—;j—jl + %ﬁ}

_ ZL_Q -1 h'’ (‘I"h') (T/a)' ’L'
o= ofjeso ] P+ 2 L+ @7
F = 2)° 7}32!{ cot ¢,

G = Eh[ f(E)]

Introducing the complex function

I
<
!

U=28+iky; i 2.8)



372 P. M. NAGIIDI AND C. NEVIN DE SILVA [Vol. XII, No. 4

where k, an arbitrary function of ¢ is to be determined, the differential equations (2.5)
and (2.6) may be combined to read

L(U) = 2u (k—*) B+

el s[5 ot b

+ (F + &@).

(2.9)

Taking k in the form

k= —iga (vx ;) + {1 ~ [2—‘1‘, (v)\ - g)]z}m (2.10)

with the restriction (the implication of this restriction will be discussed later) that

K =k =0, (2.11)
(2.9) transforms into

L) = 2,3(% - -2”%,)0 + (F + ikG). (2.12)
By putting the last complex differential equation in the form
‘)#2110(k + i )
hf"(E) ’f"(f)

and observing that the coefficient of U’, resulting from the application of the operator

L, , defined by (2.3), is
(r/a) ]
fe = [(r/oo +3

exp [% f R dg] - h’“(ﬁ)m

then, with the aid of the transformation

L(U) -

U= (F + Q)

and that

_ _}_l_ 3/2(1_)!/2 .
W= <ho) o v, (2.13)
we obtain
1/2
W 4 200 + AQIW = [%0 ﬁ] T®OIF + ikG) (2.14)

which is the normal form of (2.12), and where

v = (b + i;—})(%)ﬂs),

- S [T - (T - - B2 e
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We now return to (2.12) and observe that condition (2.11) is fulfilled only if & is a
constant, and this may be achieved by proper choice of A and 8. In particular, we note
the following two cases.

(a) For shells of variable thickness and with reference to differential equation (2.12),
the condition (2.11) is satisfied, provided (WA — 5/2) is constant. Thus, by (2.7),

(ﬁ)h + (ﬁ)'h' - ”[(r;:)h' + (r;)h] = (ﬁ)Kf(z). 2.16)

This equation is directly integrable and its solution is

h = Kr f r"“"a[[ (ﬁ)f dE:I dt + ¢’ + ¢’ f r U d, (2.17)

where ¢, , ¢, are constants of integration. It may be noted that setting K = 0 corresponds
to the vanishing value of (WA — 8/2) or, by (2.10), to k = 1.
(b) For shells of uniform thickness, § vanishes identically and we have

_ 1 '/ a)'] _
A=7f (e)[———(r/a) , &=0. (2.18)
Clearly, A is a function of ¢ and its form is determined by the geometry of the middle
surface. However, for numerous shell configurations A and, by (2.10), k is either exactly
or very nearly a constant. '

It should be mentioned that whenever the radius of curvature of the generating
curve r, is a constant (r, may be a function of £), then, with proper choice of £ (¢ = ¢)
and by (1.2), (2.4) and (2.18), A, and thus k, are in fact constant. The cases of conical
shell and toroidal shell, treated recently by Clark [2], are included in this class.

3. Remarks on the solution of equation (2.14). Particular solutions of Eq. (2.14)
may be obtained approximately by the membrane theory of shells given by Hildebrand
in [3] or sometimes by a more recent method developed by Clark and Reissner [4]. In
this section, we shall discuss briefly the homogeneous solution of equation (2.14).

If ¥* and A are suitably regular over a finite interval of the £-axis and furthermore,
if ¥* is bounded from zero everywhere within this interval, then the classical method of
asymptotic integration leads at once to the solution

W = ¥"?{Ae™"" + Be'"} 3.1)
which, by means of well-known relations for Bessel functions, may also be written as

W= [w [ ds]w{ AToun() + BIva(n)}, (3.2)

where A and B are constants and
n = (2" f v dt. 3.3)

According to Langer [5], if ¥* is not bounded from zero everywhere within the interval
in question but vanishes to the degree n at some point £, within this interval, then (3.2)
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may be generalized to

3 1/2
W= [\I’" fe () dr] {AJ_1/ns2(n) + BJ1/nea(n)} 34
which is valid at &, .
. ¢
In (3.9 h= e [ e .

An appropriate form of this solution was recently employed for toroidal shells by Clark
[2].

If, moreover, the coefficient function A of the differential equation has a pole of
second order at £, , then by a more recent method of asymptotic integration developed
by Langer [6], a representation of TV in terms of Bessel functions is again possible and is
valid at & . It may be mentioned that application of this method yields a solution for
ellipsoidal shells of revolution which is valid at the apex (where a pole of second order
occurs); this will be given on another occasion.

4. Acknowledgement. The authors are indebted to a referee for helpful criticism.
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