
1955] C. R. PUTNAM 105

of the zero degree solution, namely

y0 = ar cos rut + cos (nut + <p), Ax = A/o?(r2 — n').

It should be emphasized that the preceding work has been carried out on the assump-
tion that the forcing term F(t) in (1) is of order unity. Synchronization effects have been
sought for, therefore, only in the terms of the solution of this order of magnitude.
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A NOTE ON THE PATTERSON FUNCTIONS*

By C. R. PUTNAM (Purdue University)

The following brief note was suggested by a paper of Hartman and Wintner [l]r
dealing with the Patterson function P(x), defined by

P(x) = L~' f p(t)p(t + x) dt, (1)
Jo

where p(x) denotes a positive periodic function of period L. If p(x) possesses a finite
number N of (relative) maxima on the interval 0 g x < L, then, as a consequence of
what the above authors refer to as the Patterson principle in crystallography (see [2]),
the function P(x) would have at most N(N — 1) maxima on the interval 0 < x < L.
(Obviously, the function P(x) is a positive even periodic function of period L, with
absolute maxima occurring at the points x = 0, ± L, ± 2L, ■ • • .) By constructing
counter-examples for the case N = 2, the authors show that P(x) can have more than
the predicted two peaks on 0 < x < L and conclude that the Patterson principle
cannot be valid as a general mathematical theorem.

The present note will deal with the case N = 1, so that p{x) corresponds, in the
terminology of Patterson ([2], p. 521), to an electron density which is itself an "atomic
function" possessing a single peak on 0 ^ x < L. It will be shown that not only is the
Patterson principle (which would here deny the existence of any peaks of P{x) on
0 < x < L; see loc. dt., middle of page 522) false even in this case, but that P{x) may,
in fact, have any specified finite number of peaks on 0 < x < L.

To this end, let n denote an arbitrary positive integer and divide the interval
0 ^ x £ L into 2n parts of length d — L/2n. Next define the step-function p{x)
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(= p(x + L)) on 0 ^ x < L by:

1, 0 ^ x < d,

p(x) = k, (2k -3)d ^ x < (2k - 1 )d (k = 2, • • • , n), (2)

.b, (2n — l)d ^ x < 2nd,
where b is a positive constant to be determined. Then the graph of P{x) is a polygonal
path with vertices having abscissas on 0 g x < L at x = 0, d, • • • , (2n — 1 )d. It will
be shown that for a proper choice of the constant b the function P(x) of (1) has maxima
occurring at the points x = 0, 2d, ■ • • , (2n — 2)d. For reasons of continuity, it is clear
that the above p(x) can be replaced by a continuous positive function possessing a single
maximum on the interval 0 ^ x ^ L and so that the corresponding P(x) of (1) possesses
n maxima on 0 ^ x < L; see the remark of [1], p. 272.

An easy calculation shows that, for the p(x) of (2), the function P(x) satisfies

f (n + 1 )bd, for m = 1, 3, • • • , 2n — 1,
P(md) = c„ + j (3)

I (n + 2)bd, for m = 2, 4, • • • , 2n — 2.
Accordingly, since the constants cm do not depend on b, it is clear from (3) that for a
sufficiently large b, the inequalities P(2kd) > P[(2/c + l)rf] and P[(2k + l)rf] < P[(2k +
2)d] hold for k = 0, 1, 2, • • • , n — 1. Thus, the function P{x) has n maxima
on 0 ^ x < L as claimed, and the existence of a continuous p(x) with the desired
properties now follows as remarked above.
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ON HELICAL SPRINGS OF FINITE THICKNESS*
By PETER HENRICI (National Bureau of Standards)

1. Introduction. The problem of determining the stress distribution in a statically
loaded, closely coiled helical spring, whose cross-section is not necessarily small in com-
parison with the diameter of the helix, has been solved approximately by iteration by
Gohner [5, 6] and exactly in terms of a series of appropriate Legendre functions by
Freiberger [4]. In the present paper it is shown that the exact values of the stress con-
centration factor as well as of some other significant quantities of the problem can be
developed in terms of a certain parameter (namely the reciprocal of the so-called spring
index) so as to recover Gohner's approximations and to obtain further approximations
of the same type.
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