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APPLICATION OF THE GALERKIN METHOD
TO PROBLEMS IN HYDRODYNAMIC STABILITY*

BY

RICHARD C. DI PRIMA**
Massachusetts Institute of Technology

1. Introduction. Problems in hydrodynamic stability fall essentially into two cate-
gories: those in which the instability may be traced to the action of viscosity and those
in which the instability may be attributed to some other factor such as centrifugal force.
Examples of the former are the nearly parallel, viscous flows, where it is sufficient to
consider only two dimensional disturbances. In the latter class are the problems of flow
between rotating, concentric cylinders and over concave'walls; here three dimensional
disturbances must be considered. In these problems there will be no "inner friction
layer" and hence there should be no rapid oscillation of the eigenfunction. Consequently
such problems should be amenable to treatment by the Galerkin method.

The stability of a viscous fluid contained between two concentric rotating cylinders
was first investigated experimentally and analytically by G. I. Taylor [1], When the
cylinders rotate in the same direction investigations have also been carried out by
Jeffreys [2], Synge [3], Pellew and Southwell [4] and Meksyn [5]. If the cylinders rotate
in opposite directions, more formidable mathematical problems are presented: however
the work of G. I. Taylor still applies, though the calculations become much more tedious.
Also, Meksyn [6, 7] has obtained asymptotic representations of the stability equation
in this case.

In Sec. 2, this problem is formulated in a slightly different manner from that adopted
by Taylor and Meksyn. This formulation brings out clearly the structure of the eigen-
value as well as its dependence on two other parameters. Explicitly, S, the eigenvalue
defined in Sec. 2, is a function of Xdx and djd. Here 2x/X is the wave length in the axial
direction, d is the distance between the cylinders and di is the distance from the inner
cylinder to the vanishing point of the mean velocity. It is shown, with the help of experi-
mental data, that for small djd, S = S(\du 0) and for djd greater than roughly .55
the dependence of S on djd cannot be neglected. The Galerkin method is used to solve
the resultant eigenvalue problem. Computations are carried out for d^/d small, and
djd = 1, obtaining results in agreement with the experimental data given by Taylor
(see Figs. 1 and 2). The result for small djd agrees with that obtained by Meksyn.
In the transition range from Xd, = constant to \d = 7r(obtained when the cylinders
rotate in the same direction, djd > 1) where the dependence on djd may not be
neglected, the method is directly applicable though the calculations will be slightly
more lengthy.

The stability of a viscous flow over a concave surface was first investigated by
Gortler [8] and later by Meksyn [9] who obtained different results. Because of the dis-
crepancy in the results as well as to see if the Galerkin method might be applicable in
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a future study of the stability of a compressible flow over curved plates, some rough
computations were carried out for this problem. The results obtained in Sec. 3 tend to
confirm those of Gortler.

2. Rotating cylinders. For a viscous incompressible flow between two coaxial, in-
finitely long cylinders of radii Ri and R2 , (R2 > Ri) and angular velocities 0L and fi2
the equations of motion admit the stationary solution

V = Ar + f. (2.1)r

The constants A and B, determined by the boundary conditions, are

A _ Ql(l nRy/R\) p _ p)Rl (cy o\
1 - R\/R\ ' 1 - R\/R\ ' { )

where n = Q2/Q1 .
Superimposing on this basic flow a symmetrical three dimensional disturbance we

obtain the following linearized differential equation for marginal stability:*

(DD* - X2)3y = (a + pjo. (2.3)

Here the wave length of the disturbance in the axial direction is 2ir/\, v is the kinematic
viscosity, D = d/dr, D* = D + 1/r, and v is the radial component of the disturbance.
The boundary conditions are

v = 0, (DD* - X2> = 0, D*(DD* - X2> = 0, (2.4)

at r = Ri and r = R2 .

In accordance with the work of previous investigators it is assumed that the differ-
ence in the radii of the two cylinders is small compared with their mean, i.e.

d = {Ri — Ri) <SC §(i?i 4~ R2)- (2.5)

In this case d is the important scale in the motion, D = 0(1 /d), X = 0(l/d) and 1/r
may be neglected compared with D. Consequently Eqs. (2.3) and (2.4) reduce to the
following equations given by Jeffreys [2]

(D2 - X2)3« = (a + (2.6)

and

v = 0, (D2 - X> = 0, D{D2 - X2> = 0, (2.7)

at r — Ri and r = R2 .
When the cylinders rotate in the same direction the basic angular velocity, A + B/r2,

may be approximated by a constant. The resultant eigenvalue problem requires the
minimization of a critical parameter T(^ , n, Rx, R2) with respect to Xc2[4]. This minimum
occurs approximately when \d = ir, a result which will be used later.

For the problem under consideration, in which the cylinders rotate in opposite
directions, A + B/r2 is approximated by a straight line profile which has the slope of

♦Eliminate u from Eqs. (51) and (54) of [10] after setting H and ^ = 0.
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V/r R0 , R0 being determined by V(R0) = 0. It is easy to show that

p _ (1 ~ m)1/2 • fO o\
0 (1 - nR\/R\)U2' ^ '

Setting r = R0 + f we obtain, upon dropping terms of order (f/fl0)3, the relation

Let

A- + § = f- (2.9)r Ii0

, - 1 (A x rt   > j o _ _ 8Q?(1 - nR\md\
X ~ dl (dl + f)' ° ~ Xdl ' 5 ~ ~ ^2(1 - Rl/R\)R0 ' . (2"10)

where di = R0 — 72i ; then from Eqs. (2.6) and (2.7)

(D2 - ayv = Sa2(:r - l)t>, (2.11)
and

v = 0, (D2 - o2> = 0, D(D2 - a2)v = 0, (2.12)

at x = 0 and a; = d/dx > 1, where D = d/dx.
The stability problem requires, for given values of the physical parameters i?i ,

R2 , n, the determination of the minimum value of with respect to a. From the form
of S we see that minimizing Sli for given Ri , R2 , and ^ means minimizing S. It is clear
from Eqs. (2.11) and (2.12) that S is a function of a = Xdi , and also d/di . Hence for
each new set of physical constants Ri , R2 , n the minimization with respect to a must
be carried out anew. Fortunately, however, it is possible for a wide range of values of
d/dx to neglect the dependence of S on dl/d and then the minimization with respect to
a may be carried out once and for all.

The possibility of neglecting the dependence of S on d1/d is motivated by the fact
that the centrifugal force will tend to cause instability in the region R^ < r < R0 and
will tend to stabilize the flow in the region R0 < r < R2* Now if R0 is close to the inner
cylinder, the exact position of the outer cylinder should have very little effect on the
eigenvalue problem as long as it is sufficiently far away from R0 and hence we can let
R2 —> co. That is, for our eigenvalue problem, if d/d, > 1/5 > 1 where S is sufficiently
small we may set djd = » in the boundary conditions (2.12). To check the validity
of this argument and also to estimate the size of S, values of S were computed using the
experimental data of Taylor and plotted against dx/d. The results are exhibited in Fig. 1.
For 5 somewhere between .5 and .6 we see from Fig. 1 that for dx/d < 5, there is very
little variation of S with djd and the above argument is verified.

It should be pointed out here that there is possibly an error in the data for Ri = 3.80
([6], p. 491) and probably those points should be slightly higher.

The analysis, using a linear profile for V/r, may be summarized in the following
manner. For 0 < djd < 5, S = S(\dit 0); for 5 < d,/d < 1, S = S(\di , di/d), and
for djd > 1, T = T(\d). Then 5 < dt/d < 1 is the transition range from \di = constant
to \d = constant and in that range the dependence on dt/d cannot be neglected.

First we treat the case in which 0 < dx/d < 5, and the outer boundary conditions
are to be applied at <». Then the eigenvalue problem involves only the three boundary
conditions at x = 0 since we seek solutions which die out exponentially at This

*See ([1], p. 327) and [2] for a more detailed discussion.
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problem is equivalent to that formulated by Meksyn [6]. Formal application of the
Galerkin method yields the eigenvalue determinant

| - Sa'Ja | = 0, (2.13)
where

la = [ Vi(D2 — a2)3Vj dx, Ja = [ (x — dx. (2.14)
Jo Jo

The functions i>,- are taken to be of the form e~mx[x3 + b(mx2 + x)] and e~mtx" for n > 4,
where b is determined by the boundary conditions (2.12).

Because of the change in sign of the term x — 1 in Eq. (2.11) some difficulty in apply-
ing the Galerkin method is to be expected. In order to approximate the correct mode,
i.e. the mode corresponding to the smallest positive eigenvalue, using only a few func-
tions it is necessary to make several preliminary considerations. First from Eq. (2.11)
we have for x large that v will behave roughly as exp [— (/Sa2)1/6x7/6]. Reasonable values
of S and a from the work of Taylor and Meksyn are 1000 and 2; hence likely values for
to are 4, 5, or 6. Also taking v{ = e~mzxn for n > 4 it is easy to show that < 0, and

J a ^ 0 as to is ^ n + 1/2; or equivalently as v has its maximum at x ^ 1 — 1/2 m.

Thus for any single function to give a positive eigenvalue it is necessary that its maxi-
mum be inside of 1 — 1/2m. This is in accord with the remarks made in the preceding
paragraphs.

If all combinations of two functions having maxima within this critical value gave
satisfactory results, it should be expected that three such functions would give an accu-
rate value for S, even though extraneous roots might be introduced. For a = 2 the
following table was constructed

Function Has maximum at x = S

Vl = e-s'[x3 + bi(5x2 + x)] 0.43 8307

v2 = e~,x[x3 + W 4x2 + x)] 0.53 3600

„3 = e"5V 0.8 7776

vt = e~*'sx* 0.89

Vs = e"5V 1.0 -3246
Two term approximations using various combinations of these vt gave the following

results: <S13 = 876, S23 = 968, S2t = 1107 where the subscripts refer to the functions
used. Since the results of these calculations were satisfactory, a three term approxima-
tion for v was used and the minimum value of S with respect to a was determined
graphically. The final result was

S123 = 1075, a = 2.125.

Meksyn gives S — 1132, a = 2; the mean percentage difference in S is 5 per cent. To
investigate the effect of using an undesirable function (if only a few are to be used) the
function v2 was replaced by v5 with the result that ^i35 = 1200 at a = 2.25. The per-
centage difference based on /Si23 is 11.5 per cent which though not good is acceptable.
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Both S123 and the Meksyn results are in agreement with the experimental values of S
if the data for Ih = 3.80, which is probably in error, is not considered.

For S < djd < 1 the limiting case when djd = 1 was also computed. In this case
the function (x — 1) does not change sign and no difficulty is encountered in using the
Galerkin method. Analogously to the work of Pellew and Southwell [4], the function
P is introduced by

P — (Z)2 — a2)v. (2.15)

The boundary conditions (2.12) are then P = 0, DP = 0, v = 0at£ = 0 and x = 1.
Now, P is expanded in a series of functions P< satisfying P< = DP, = 0 at x = 0 and
x = 1, and the v< are obtained by integrating Eq. (2.15) subject to v = 0 at x = 0,
and x = 1. (Introduction of the function P simplifies considerably the computational
work. It was not used in the previous case because it was desirable there to have approxi-
mations for v which did not depend on a.) Using the P, as the weighting functions, we
obtain the eigenvalue determinant

/:,• - Sa2J'u I = 0,
where

= f {(Z)2 - a2)P(-(Z)2 - a2)P,.J dx,
Jo

J a = - [ (x - 1) {Dy, Dys -f ayiyi) dx + f (Dy^-y, dx.
J 0 •'O

The functions P, are the following: P, = x2(x — l)2 which is symmetric about x = 1/2,
with maximum there, and P2 = x2{x — l)3 with minimum at x = 2/5. Carrying out the
computations we obtain

S = 3390, a = \d = 3.15, for d,/d = 1.

This result is within 4.5 per cent of the average value of the experimental data, also
a = 3.15 is in agreement with the value of \d obtained by approximating the velocity
profile by a constant, when the cylinders rotate in the same direction.

Using this result and the fact that \d = 2.125 d/dl for 0 < djd < 5 it is possible
to draw a smooth curve for \d vs. dt/d which gives the value of \d for the interval
S < djd < 1. This curve is shown in Fig. 2. The dotted curve is the extension
of \d\ = 2.125 past the range of validity of that result, roughly S = .55, as observed
from Fig. 1. The circles indicate the experimental results of Taylor.

Finally, the method just discussed in which the function P is approximated should
apply readily for values of d,/d less than one, but still close to one. That is, as long as
the function — 1 is negative over the major part of the range. A reasonable lower
bound for djd might be .75. It may be necessary to take an additional term in the approxi-
mation.

3. Flow over concave surfaces. The differential equations and boundary conditions
governing marginal stability of three dimensional disturbances for an incompressible,
viscous flow over a curved surface are

(Z)2 - <r> - (dU/dv)v = 0,
(3.1)

anUu + (Z)2 - c2)2v = 0,
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and
u = 0, v — 0, Dv — 0, (3.2)

at t) = 0, and r? = <*> ([8] Eq. (2.7)). In this derivation it was assumed that the com-
ponent of the basic flow perpendicular to the wall was identically zero. Also the dis-
turbances were assumed to be independent of x, the arc length along the plate, and of
wave length X in the z direction parallel to the plate. In Eqs. (3.1), U is the basic flow;
5 is the length scale in the y direction; 17 = y/5; a = a8 where a = 27t/X; h = 2(U08/v)2
(5/r); r is the constant radius of curvature, taken positive for the concave side of the
surface; and D — d/dt\.

Gortler [8] solves the system of equations (3.1) by using Green's functions to convert
them to integral equations, which he then solves approximately. Meksyn [9] eliminates
v from Eqs. (3.1) and then obtains an asymptotic solution in terms of the large parameters
a and 11. Actually a — 0(1); this may explain the discrepancy between Meksyn's results
and the work of Gortler mentioned in the introduction.

It is clear from Eqs. (3.1) that the difficulties discussed in the previous section will
not be present here. However, to use the Galerkin method, it is most convenient to
retain Eqs. (3.1) as they are and approximate both u and v. Then an n term approxima-
tion for each of the velocities requires the solution of an eigenvalue determinant of the
order of 2n, and hence the computational work is more than doubled for each succeeding
term in the approximations for u and v.

The basic velocity U is approximated by the straight fine profile, U = 77 for 0 < 17 < 1,
U = 1 for 17 > 1. This was the case considered by Meksyn and as one particular example
by Gortler. The disturbance velocities u and v are approximated by the simplest functions
satisfying the appropriate boundary conditions:

u = e "(Atf + A2V2 + • • •)> £3 3^

v = e~b\BlV + Brf +•••)•
The choice of a and b depend upon the number of terms of the series which are to be
taken. One wants to insure that each individual term dies out sufficiently rapidly as
rj —y a) but also the lower order terms should not die out too rapidly. In this work
only two terms of each series are used, as primarily the interest was of a qualitative
nature. The constants were taken to be a = b = 1.

Applying the Galerkin method in the usual manner the neutral curve given in Fig. 3
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was obtained. The results are expressed in terms of the momentum thickness 0([9],
p. 261), Re = U09/v. The critical value obtained by Gortler for this case was
Re(6/r)1/2 = .83 at ad = .15, by Meksyn Re(6/r)l/2 = 3.65 at ad = .400, and by this
author Re(6/r)l/2 = .39 at ad = .1. This result* then confirms the magnitude of the
critical parameter given by Gortler. In performing the present calculations, a second
critical value of R0(6/r)w2 was obtained for the higher mode. It is interesting to note in
passing that this value is of the order of 2, i.e., comparable with Meksyn's value.
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