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1. Introduction. If a fluid is streaming past a body of revolution with a velocity at
infinity parallel to the generators of the body, then it is well-known [2] that the boundary
layer induced on it is equivalent to the boundary layer on a flat plate provided only
that the thickness of the layer is small compared with the radius of the body. Recently
an increasing amount of attention has been paid to the flow of compressible fluids over
slender bodies of revolution at high speeds. Since the displacement thickness §, of the
boundary layer on a flat plate is of the order M*zR™'/? where z is the distance from the
leading edge, M is the Mach number of the flow in the main stream and R is the Reyn-
olds number based on z, there is a real possibility that §, may be at least of the same
order as the radius of the body. It is of interest to examine the modification to the
boundary layer which is then necessary. We restrict attention to incompressible flow,
but it is hoped that the methods developed here may be extended to compressible
boundary layers.

The boundary layer on the outside of a circular cylinder near to the leading edge
has already been considered by R. A. Seban and R. Bond [3]). They assumed that the
axis of cylindrical tube was parallel to the direction of flow and that the boundary
layer was of zero thickness at the leading edge of the cylinder. They expanded the
stream function in a power series in ascending powers of (z/a)/* where z is the axial
distance from the leading edge and a the radius of the cylinder. The leading term is
the Blasius solution for a flat plate in a uniform stream and they computed numerically
the two following terms. Among other things they found that the skin friction coefficient
C, on the cylinder is

(v ”’[ (16xv)”2 (lﬁxy) ]
0.664(w> 1+083(pz) —0071(F5) + - |,

where v is the coefficient of kinematic viscosity and U the (constant) velocity in the
main stream. The initial effect of curvature is therefore to increase the skin friction.
It is the aim of this paper to examine the boundary layer at large values of z. For
this purpose we are not concerned with the precise form of the body near z = 0, although
in fact we shall assume it to be a circular cylinder for all z > 0, and little modification
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would be needed to account for the effect of a rounded nose. We show that if the velocity
of the main stream is constant, the skin friction may be expanded as a double power
series in descending powers of log ¢ and £ of which the leading term is proportional to
[log £]”! where ¢ = 2xv/Uaq’. It is thus of larger order than at corresponding points of a
flat plate, so that the increase found by Seban and Bond [3] near the leading edge is
maintained a long way downstream. The thickness of the boundary layer is, however,
only slightly reduced in comparison with the flat plate and this implies that most of
the changes in velocity occur relatively close to the cylinder. ‘

The asymptotic form of the boundary layer is also considered when the main stream
velocity is proportional to z™ where m < 1. If m > 1 the boundary layer thickness
diminishes as z increases so that the effect of curvature is small when z/a is large, and
if m = 1 the boundary layer is of constant thickness and there is a solution dependent
on one parameter only [1]. We show that if —3 < m < 1 the leading term in the asymp-
totic expansion of the skin friction is also proportional to [log £~ and we infer that
the effect of the curvature of the body is to delay separation.

The contrast between the boundary layers on a flat plate and on a circular cylinder
is not confined to the skin friction, for on the flat plate the boundary layer, while diffusing
outwards, retains a similar form, whereas on the circular cylinder the form is always
altering and ultimately tends to that given by Oseen’s approximation. The difference
between plane and axially symmetric boundary layers may also be illustrated as follows.
Suppose we have a viscous fluid occupying the region between two parallel planes a
distance d apart, of which one is at rest and the other moves with velocity U parallel to
itself. Then the velocity u of the fluid is given by

where y measures distance from the moving plane. It is seen that the form of the velocity
. profile is independent of d, being always a straight line. Now consider the corresponding
problem in axial low. We have a pipe bounded by two concentric cylinders of which the
outer of radius b moves parallel to itself with uniform velocity U and the inner of radius
a is at rest. Then the velocity u of the fluid in the pipe is

log (r/a)
U tog (b/a)’

where r measures distance from the axis. It is seen that the radii of the cylinders are of
great importance in determining the form of the velocity profile. For example if we fix
b and r, then as a — 0, u — U so that for small a there is a boundary layer in the vicinity
of the inner cylinder. If we interpret these two solutions as the asymptotic form of the
boundary layers when the fixed surface is semi-infinite, it may be deduced that in the
two-dimensional problem the boundary layer on the fixed surface grows until it has
spread uniformly throughout the fluid, while in the axially symmetric case with a small,
it is always confined to the neighbourhood of » = a.

2. The equations of the boundary layer. We consider a circular cylinder of radius a
whose axis occupies the positive half of the z-axis. Let » denote distance from this axis
and u, v the components of the fluid velocity along the directions of = and r respectively.
Then, if v is the coefficient of kinematic viscosity, p the pressure, and p the density, the
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equations of motion in the incompressible boundary layer are

i) d
3z "W + 5, () =0, 1
du , ou_ _13p 22(%)
“or T % = “pax Trar\Tar) | @D
= _lép,
and o(l) = o or ,
The boundary conditions are
u=0v=0 whenr = a,z > 0,

u— U(z) as r — o for fixed x and as z — 0 + for fixed » > a,

where U(z) is the velocity of the fluid in the main stream. The third equation may be
interpreted as implying that the pressure variation is small across the boundary layer.
We shall assume this to begin with, and then, using the solution we obtain, it may be
shown that the pressure variation across the boundary layer is O(pUv/z) and negligible
when z is large. The values of U in which we shall be interested in this paper will be
proportional to z” so that

1op _ mU*
P vl 2.2)
and from the equation of continuity we can define a stream function
val(¢ ) 77))
where
¢ =2mw/Ud® and n = r*U/2av. (2.3)
Then
14 v
=3 (vx¥) = Uan 2.4)
and
v
v = ———(vx\l’) = —- [\I/ -1 - m)n an + (1 — m)¢ g] (2.5)

The equation satisfied by ¥ is
R 4 B4 :
e R m[l - (@n) ] — - my LT g

The boundary conditions are

v
an

ov/on — 1 as n— © for all ¢ and as £— 04,
provided ¢ > 1.

=¥+ (1 - m)s at =1, 2.7
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We note that if m = 1 then 7 is a function of r only and that a solution may be found
with ¥ a function of n only. This special case has already been discussed by Cooper and
Tulin [1]. If m > 1, then ¢ — 0 as £ — «. The boundary layer decreases in thickness as
z — o s0 that the effects of curvature are greatest at the leading edge and may be neg-
lected in the asymptotic expansion, which may therefore be reduced to that for a flat
plate with the same mainstream velocity.

3. Uniform mainstream. Here m = 0 and to obtain the first and crucial term of the
asymptotic series for ¥ we assume that as ¢ — «, £9¥/3¢ — 0 for fixed 5. The right
hand side of (2.6) is then zero in the limit £ — « and the boundary conditions reduce to

o v
\p—an_o at 7=0 and aﬂ-—»l as n— o,
Equation 2.6 may be integrated once to give
A A 'Xﬂ]
1% Ao |- 5 | 3.0

where A is a constant. We deduce that either 9°¥/d3° ~ 1/9 near n = 0 which implies
that the boundary condition on 8¥/dy at n = 0 is violated or A = 0 and 8*¥/dn*
except possibly at n = 0. We accept the second possibility and obtain as our first approxi-
mation

. ¥ = q, (3-2)

This is simply the stream function of the undisturbed stream and satisfies (2.6). The
boundary condition at » = ¢! is invalidated however. The approximation may be
improved by substituting back into (3.1) and applying the boundary condition on
d¥/dn at n = £ ' instead of at = 0. We find that

i -
. ' 7 3—"3 = Ae 1/2,
whence
© -~3/2
®o1-4ac dz
an " z

Now when 7 is small

[+ S a7 33)

where iog C = 0.577 ... and is Euler’s constant.
Hence, since 0%/dn = 0 at ¢ =

= [log (2¢/C)]™" + Of¢ log (2¢/0)] ™", 349
the second approximation to d¥/dy is

L —3/2 dz

~ Tog (2£/C) f 3.5)

and we note that the correction term just found is small when ¢ is large except near n¢ = 1.
This suggests that we write

- _F@m
=1t 2 g /or T O(e logs 3.6)
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and investigate the properties of F,(n). If our expansion is to be meaningful then it must
be possible to make the error in ¥ as’small as we please by taking # large enough and
taking a sufficient number of terms. Certainly this is not true if we retain the first term
only, but we shall show below that the successive terms are of uniformly decreasing order
which suggests that our requirement is met.

It is of interest to note that the first two terms of this expansion are the same as
those obtained on Oseen’s approximation when x is large and it is likely that a similar
result would be found whatever the cross section of the cylinder. In contradistinction
to the boundary layer on the flat plate, it appears in fact that Oseen’s approximation
becomes more accurate as x increases.

Substituting in the differential equation and comparing coefficients of (log 2¢/C)”*
we obtain

20F)" + (2 + n)F) = —(s — DF._, — F._\F!
-2 (3.7)
- ‘Z_} [(tFiFi..o + F((FZ.-, — FIL)],

where the primes denote differentiation with respect to 5. In the determination of the
F, we shall take as boundary conditions
V=0 a =0, 9¥/dan=0 at n =¢("' and 9¥/9n—1 as 7 — . (3.8

The first of these conditions is inaccurate and so later on we must investigate how large
is the error thereby incurred. We now prove that if '

Fi(n) = D, log nC + E, + A.n(log 41C)* + B.n log $nC + O(n) (3.9)

near n = 0, for 1 < ¢t < s — 1, where the A’s, B’s, D’s and E’s are constants, then
F;(n) has a similar form near n = 0. It may then be inferred that (3.9) is the correct
form for F[(n) for all 8 > 1 since it is the correct form when s = 1. From (3.9) it follows
that near n = 0

F. = Dy log $1C + (B, — D) + 3An*(log $1C)* + 4B, — A)n’* log #aC + OGr),
since F, = 0 at » = 0, and
F!’ = Din7' 4+ A(log $1C)" + (24, + B,) log 32C + 0(1).
Hence substituting into (3.7) we find that
20F" + (2 + )F! = 24,(log $1C)* + 2(B, + 44,) log $2C + 0(1), (3.10)
where
24, = — :Z_j tD.D,_,,

and

—2B, — 84, = (s = Dy + D,Duey + 3. (tD.D-sy — D.D,))

+ > UD.E,-4-» + D,_._,E).

tm1
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Tntegrating (3.10) once, we obtain
7F) = A,n(log 37C)* + (B, + 24.)n log $2C + D, + O(x),

whence
F, = D, log $1C + E, + A,n(log $1C)* + B,n log $1C + O(n),
and, comparing with (3.9), we see that the desired result is proved. Thus, near n = 0

Q — = D, IOg %’70 + E, -1 -1
o =1t 2 e o+ Ok llog (26/C)17').

In particular, when y = 1/¢, 9¥/dn = 0, so that

= D, & __E
1= 2 Tz 0T ~ X log @/C)T @11
and therefore
Di=1; D.=E.,, s>1. (3.12)

We may now express 4, , B, in terms of D, obtaining

-2

24, = — . iD;D._._, . (3.13)

t=1

and

=2
B.+ 44, = (= DD, — 3 > (24— DD.D, + D.Dcr).  (3.14)
tm}

Since E, is determined from the condition that F, — 0 as n —» «, and A,, B,, D, are
dependent only on the E’s we may determine as many of them as we please by successive
" substitution. The procedure is illustrated below by the determination of D, and D, .
The equation of F, is

29F{" 4+ 2 + 9)F{’ =0,

with solution
- ® _pdz
" __ -1 -n/2 [ 2/2 U=
) U Dln € ) Fl Dl‘/; (4 2z
and - (3.15)
Fl = '—'Dlﬂ [ e_'/2 d_z - 2D|(1 i 6_"/2).
1 2
From (3.3) and (3.13) it now follows that

D, =1 and E, =0. (3.16)
The equation for F, is '
29F)"" + (2 + n)F;y’ = —F] — F\F{',

whence

d 1
gy QneFY) = 2 F\ = Fie'”,
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so that
20" Fy = — [ P — [ F,@
3.17)
= 2"+ 17+ 2 [ "’2dz+4logn—2e "4+ C,,
v

where C, is a constant.
When 7 is small the right hand side is equal to

—4log 39C + 4logn — 2+ C, = 2D, . (3.18)
Hence from (3.12) and (3.16)

and, since F; > 0 as n —> o,

E, = _% e dn {(2e"/2 +04+2 f —er2 d2 44 log 7 — 26" + Cz}
° 7 ’ (3.19)

2
=—2log2—%=D3.

Further terms of the series may be found in a similar way although the computations
soon become very complicated and recourse to numerical methods is then necessary.

In order to complete this discussion of the asymptotic boundary layer on the circular
cylinder we must now investigate the leading error term in (3.6) to show that it is
sufficiently small for large x. We write

_ = F.(n)
Y=n+ 2 o7 T2 (320

and suppose that the F, are all known. The differential equation (2.6) is satisfied if
& = 0 but not the boundary conditions and, neglecting terms involving n* and powers
of log 1C4y, it follows from (3.9) that near n = 0

F; = D, log $1C + E, + A.n(log $1C)* + B.n log $2C + Cin + -

where the A’s, B’s and C’s may be expressed in terms of the D’s and E’s. Hence when
= ¢! we have, neglecting £,

% _ A, -5 C,
am géllog @/or T .z.:lfllog @07 ?;E[log @¢/0)r

and

08 _ & _(+1DD, , - _sB —D)
T - RGO T Higagort O

Now from (3.13) and (3.14) and the solution for F, already worked out,
4, =0, 4, =0, 4, = -4}, A, =0
B, =0, B, = -1, B, =0,
Ci=4% C.=4
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and hence the boundary conditions for & are

@ _ 1 _ 5 .

on  tllog (26/C)]  2¢[log (2¢/C)) ’

o _ % 2 2 .
% ~ "an  Ellog (2/C)] ~ &llog (2¢/O)T ’

when 7 = ¢! and ¢ is large, and 9®/99 — 0 as n — .
If now we put

®+¢

(3.22)

—__ G (E 1 )
| ® = tiog /0T T \iflog @/OT/"

then 29G!"" + 2G)" + 2GY = 0 ’

with the solution

O (3.23)

" 2

Further terms of the series for ® may be obtained if desired but sufficient has been
done to show the form which the asymptotic expansion of d¥/dn must take, viz.,

ov = P} () 24
CLANRE IR S 110 ) B— 3.
an t .2, £ "'[log (2¢/C)) @2

where the P’s are to be determined successively first for s = 1 and all ¢, then s = 2 and
all ¢, ete. It is noted that there are no terms in the expansion of 3¥/dn with ¢ = 0 owing
to the form of the expansion in (3.3). Further it is only necessary to obtain the P, .(n)
for 1 < t < p in order to determine P, ,_; although such terms are of higher order
than any of the P, , . Finally it is pointed out that as soon as we begin to examine the
P, , the effect of the shape of the body near 2 = 0 becomes of importance so that for
_example a finite shift of the leading cross section of the cylinder along the x axis will
change them.
The skin friction on the cylinder

CR
© ar, r=a P x 8772 n=1/¢%

(3.25)
_ el _Fi') 3'(n) '(n) ]
U [log @/C) T Tog @/OF T " T ilog @e/OT T
Now when 7 is small .
V) =2 =34+ 0n); 3(n) = —log nC/2 + § + O(n);
F{'(n) = —n7'(2 log 2 4+ }r°) — }(log $7C)” — log 47C + O(1);
Y(n) =2'Dy+ O(logn), and G'(n) ="+ 0Q).
Hence after some reduction
( 6_u> _2,¢U[ 1 _ _2log2 44’
B or).ca ™ "a Llog 42v/Ca’U) ~ [log (4xv/Ca?O)J 3.26)

a’U 7
* o {2 log (4zv/Ca’U) T } e




1955] BOUNDARY LAYER IN INCOMPRESSIBLE AXIAL FLOW 121

For a flat plate at a distance z from the leading edge the skin friction is
[w(9u/8y)],-0 = 0.332uU(U /v2)'?,

which is of smaller order than (3.26) when zv/a’U is large. Thus the trend noticed by
Seban and Bond [3] near the leading edge of the cylinder is emphasized at large distances
downstream and we may conclude that the effect of the curvature of the body is to
increase the skin friction, especially at large distances downstream when the boundary
layer is thicker than the radius of the cylinder. The skin friction is then almost constant,
diminishing like (log z)~*.

We may also calculate the velocity profile at large distances from the cylinder when
z is large and we find that '

2 e—v/z
~ nlog2¢/C

The boundary layer thickness is ultimately of order

U
U-l

x( Uz log (4l;:v/Ca’U))l/2’

so that the effect of curvature on it is small thinning it out by a factor (log z)~/%.

4. Main stream velocity proportional to z™. There is a difficulty with the boundary
layers caused by main stream velocities of this kind at the leading edge of the cylinder,
especially if m < 0. We are however interested in the behaviour of the boundary layers
at large distances downstream, so that we may avoid the difficulty by supposing that
the main stream approaches this form at large distances downstream and our solution
will give the asymptotic form for the ensuing boundary layer.

As pointed out in Sec. 2 our method is only applicable if m < 1 and then we write

- P n.‘(ﬂ)
V=9 —_—, 4.1
o1 (log )8!
with the boundary conditions

v
——1 as n—> ®

an

-1

v
] aﬂ

=\If+(1—m)s‘;—§'=0,

when 9 = ¢
The values of P, , may be obtained seriatim.

Of particular interest is the effect of curvature on the tendency of the boundary
layer to separate, and some information on this score may be obtained from the leading
terms of (4.1). If we set P, ,(n) = H(n) then

20H'" + (2 + mH" — 2mH’ = 0,
with boundary conditions
H = —logt¢ at n=¢' and H -0 as 12— o,

The appropriate solution is

o= 4 [ {5
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if 2m > —1. Defined by this integral, H'(n) — 0 exponentially as 7 — « and near n = 0
’ — 1 ! dt 2m
H(ﬂ)——AloggnC+Aj;7[(1—t) - 114 ---.

Hence A = —1 and

“(%ur),-, = azlgg P + higher order terms.
If 2m = —1 the integral is singular and in fact the method breaks down because H' =
Ae™"? and does not behave logarithmically near n = 0. It is not clear at the moment
what is the correct procedure in this case. Provided —2m is not a positive integer, the
method outlined in the previous section is formally adequate but in view of the break-
down at m = —% we cannot assume at present that it is physically significant.

Now if the main stream along a flat plate is proportional to z™ we know that there
are similar solutions of the boundary layer equations with positive skin friction if -
m > —0.0904 while from our work above we see that on a circular cylinder the skin
friction is certainly ultimately positive if m > —0.5. We must bear in mind however
that the conventional boundary layer comes to an end at separation, and that the
same may well be true of a circular cylinder. There is a real danger that separation will
occur at a finite value of z if —0.5 < m < —0.0904. Nevertheless we may conclude
that the effect of the curvature of the cylinder, when the boundary layer has a thickness
comparable with its radius of curvature, is to delay separation.
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