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THE DESIGN OF TWO-DIMENSIONAL AEROFOILS WITH MIXED
BOUNDARY CONDITIONS*

BY
L. C. WOODS
Sydney University, Australia

Summary. A method is given of desighing two-dimensional symmetrical aerofoils in
subsonic compressible flow when the boundary conditions are mixed. The aerofoil
surface is divided into three parts such that the shape is prescribed in the first and third
and the pressure distribution is specified in the second. The method has the advantage
over the usual method of aerofoil design (pressure distribution given over the whole
aerofoil surface) of giving the designer direct control of the nose shape and the trailing
edge angle.

1. Introduction. Lighthill’s paper [1] on aerofoil design in incompressible flow and a
subsequent extension of the method by the author [2] to compressible flow deal with the
case when the pressure distribution is specified over the whole of the aerofoil. Now
while the designer wants to control his pressure distribution over the front half or two-
thirds of the chord he is usually more concerned about the shape of the aerofoil towards
the trailing edge than the corresponding theoretical pressure distribution, which in
any case is not attained in practice because of the action of viscosity. Indeed a number
of aerofoils which have been designed by Lighthill’s method have been subsequently
improved by modifying the shape near the trailing edge. It thus appears that a theory
which permits the specification of the pressure distribution over the front part of the
chord and the shape over the rear part would be of some practical value. The theory
given below is a little more general than this as it also allows the shape of the aerofoil
nose to be specified. The chord is thus divided into three parts in which shape, pressure
- and shape are specified respectively. The design problem is the determination of the
shape of the middle section to give the specified pressure distribution.

The theory is developed for a symmetrical aerofoil at zero incidence moving at sub-
sonic speeds. It is exact for both an incompressible gas and a ‘Karman-Tsien tangent
gas’, and hence for a real gas it is an approximate theory, applicable to most of the
subsonic Mach number range. The basic mathematical theory is as follows.

The equipotentials (¢ = constant) and streamlines (¢ = constant) of an inviscid
compressible flow are defined by

dp = qdn, dy = f—qdn, (1)
0

where p, p, are the local and stagnation densities respectively; n, s are distances measured
normal to and along a streamline respectively; and ¢ is the velocity magnitude. Values
in the undisturbed stream at infinity will be denoted by a subscript ¢ »’. The independent
variables of the theory are 6, the flow direction measured from the direction of flow at
infinity (i.e. 8. = 0), and Q, defined by

2=-[ L, @
v q
where U = ¢q. , 8 = (1 — M?)'? and M is the local Mach number.

*Received May 17, 1954. This work was performed while the author was a member of the New
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Consider an imaginary gas for which the number m defined by

m = ﬁPo/P: (3)

is constant, and equal to the value it would have for an ideal gas in the undisturbed
stream [6]. Such a gas can be shown to have two important properties. Firstly the com-
plex function,

f=Q+ 19, @
is easily shown [3] to be an analytic function of
w=¢ + im.y, )]

where m., denotes the value of m at infinity in an ideal gas. Secondly, if p is the gas
pressure, the (p, 1/p) curve is a straight line tangential to the curve for an ideal gas
at (p«, 1/p.). This second property is quite well-known, but it is convenient to outline
the proof briefly here.

From Eq. (3) it follows that the imaginary gas is defined by

a2 — 2 - (& )2

aﬂ p2 Poo ’ (6)
where a is the local speed of sound. The tangent to the adiabatic curve of an ideal gas
is dp/dp = d@’, so replacing a’ in Eq. (6) by this gradient ensures that the adiabatic
curves of the imaginary and ideal gases can touch. From Eq. (6) and Bernoulli’s equa-
tion, namely

® 4 qdq=0,
- it then follows that
o g'f = azpa ,
or
p'a’ = alps . )
Further integration yields
f— —_ _a’ 2(1 - _1_)
P — Po =\, " oo)
which is a straight line in the (p, 1/p) diagram, tangential at (p., 1/p.) to the ideal
gas curve.

The relation between @ and g is required in the following theory. From (6) and (7)
it follows that

and hence

Thus from ¢ = aM,

UM B ML ®
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(It should be noticed from Eq. (8) that a tangent gas can never have supersonic patches
embedded in it.) From Eqgs. (2) and (8) it follows after some algebra that

£ = sinh ¢ cosech (2 + ¢), 9
¢ = sinh™'(8./M.). (10)
If the flow is incompressible, @ = log (U/q), m. = 1, and
— 10 (Y eo) _ ( di)
f—log(qe = log wa, (11

where z = z <+ ¢y is the physical plane. In incompressible flow z = z(w), and so (11)
yields immediately that f = f(w).
Since f is an analytic function it satisfies

Vi =0, (12)

in the w-plane, or in any plane derived from the w-plane by a conformal transformation.
The solution of this equation with the appropriate boundary conditions follows in the
next section.

2. Mathematical theory. Figure 1 shows half of a symmetrical aerofoil at zero inci-
dence. The shape of the aerofoil is assumed known in the intervals BC and DE, while

z-plane
—0:Q ( %
Aoo B E Foo
w-plane
¢:0
e -a a b
Aco B C D E Foo
(5+i8)-plane
o or
Doo C\’_Dg.o Coo
E F,A B
FIG. 1

the velocity distribution is known, or can be deduced, as a function of s, the surface
distance along CD. The equation

o0 = [ ads,

enables ¢(¢), and hence from Eq. (9), 2(¢), to be deduced in —a < ¢ < a, but 6(¢)
cannot be determined exactly in —e < ¢ < —a, a < ¢ < b, until ¢ is known in these
intervals. Ignoring this difficulty for the moment, we shall proceed to find the solution
of Eq. (12) in the w-plane, with the mixed boundary conditions: 6(¢) known in — o <
$< —a,a <¢ < ©;9¢) knownin —a < ¢ < a.
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The transformation

(13)

where & and £ are real, transforms the upper half of the w-plane into the infinite strip

—o <6< ©,0<L ¢< 3x The (8 + ¢t)-plane is shown in Fig. 1, and it will be noticed

that in this plane the boundary conditions are particularly simple. The solution of (12)
in this case has been obtained in an earlier paper [3]; it is

(5, 8) = }r f: {6(5%) cosech (5% — & — if) 4+ Q(6%) sech (6% — & — iB)] ds*,  (14)

where 6(6*) is the value of § on ¢ = 0, and Q(5*) is the value of @ on £ = ir. Integrating
(14) by parts, we find the alternative form

16,9 = 9.+ ib, + 2 tanh™" exp (5* — & — it) do(s*)
$*=—
2 1 . .
- tan™' exp (8* — & — 1£) dQ(6%), (15)
,;t=—m
where Q. and 6. are the values of 2 and § at § = =, i.e. at ¢ = —a. From Egs. (13)

and (15)

_ . g -a b - (w + a)(¢* — a) 172 .
f@w) = Q. + 6, +w(f¢‘__‘ +[.)t“h {(w T a)} d6(¢*)
2 [ w4+ a)e — ¢%)
e {<w — a)a + ¢%)

-where, since 6(¢*) = 0 outside (b, —e), the range of integration has been reduced. Equa-
tion (16) is the required solution of (12) in the w-plane.

Two important auxiliary equations follow from (16) by expanding in a power series
in (1/w). It is found that

+ b do, (16)

fw) = 19 + = [» tanh™* (“’ + a) d6(6%)
+2 L_ tan™" (Z T ::)w d¢¥) + = /; tanh™" (z* g e Z)'" d0(¢*)},
+ i {(,/‘t___¢ + f b><¢: _T_ Z)W(«b* + a) d6(¢*)
+ (ﬁ)ln@’* +a) dﬂ<¢*>} + 0(1/w?). an

Since 6., = 0, g. = U, it follows from (2) that f. = 0. Hence from (17)

21 g (819)" g (o)
Q.+ a . tanh ( P do(¢*) + e tan P dQ(¢*)
g - ¢ _ a)l /2 _
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Equations (2), (17) and (18) yield
4 __ o ( - ”)(¢* - a) . .
b (U G e v o e

w0 (558 e+ 0 o+ 0w .

Since there can be no circulation about the aerofoil it follows from this result that

([0 + [ o+ a8e) " o

+ f (@* + a>< ¥ ﬁ)l Cdawn = 0. (19)

This equation can be regarded as a closure condition (see the closure conditions given
in [2]).
On ¢y = 0 Eq. (16) yields

+ 2 fﬂ tan™" {W}W dQ(e®), (20)

™ (@ + ¢*)@ — a)
when —¢ < ¢ < —a,a < ¢ < b, and

68) = 0. — %( [ + [ ) tan" {g:ﬁH}m d6(6¥)

a2 - fle=ene+ o) \
® T Jorm—a tanh {(a + ¢*)(a — ¢) d9(¢ )’ (21)

when —a < ¢ < a. (‘®’ denotes the ‘real part of’.)

Two further auxiliary equations of less importance can be derived from the condition
that on a well-designed aerofoil there should be no adverse infinite pressure gradients,
except at the trailing edge. This requires that d¢/ds > — =, or since from (1) and (2)

that
— < o, (22)

Such infinite pressure gradients can occur at points separating the two types of boundary
condition, i.e. at points C and D of Fig. 1. From (20), when | ¢ | > a,

o A+ [)EEEY dne

e * — A*\1/2
[ (B8 daen),
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so that if (22) is to hold when ¢ = a, and when ¢ = —a, we must have

(f,.__ +] )(¢ = a) do@*) — L (%)m dae*) <0,  (23)

([ + >(¢* ¥ Z)V 06N + | (Z ;%)m dah) >0, (29

respectively. This completes the mathematical theory.

3. Method of designing an aerofoil. For a rounded-nose aerofoil the discontinuity
in 0 at the leading edge, ¢ = —e, is i, while at the trailing edge, ¢ = b, it is 37, where
r is thus the trailing-edge angle. If for simplicity we assume that no other discontinuities
in 6 exist, thenin —e < ¢ < —a, and a < ¢ < b, we can write for the value of df(¢*)
occurring in Eqgs. (18)-(21)

and

d0(¢*) = d_o ﬁ * d¢*

ds d¢* - Rg’
where R is the radius of curvature of the surface.
Equation (21) can be regarded as the ‘design equation’ as it determines the aerofoil
shape in the interval where the pressures are specified. However before it can be used for
this purpose, it is clear from (25) that it is necessary to know ¢(¢) in —e < ¢ < —a,
and a < ¢ < b, and this can only be found by first solving Eq. (20). It is apparent,
from (9) and (25) that (20) is an integral equation for ¢. It can be solved by iteration as
follows. We assume some likely distribution ¢(¢); use it in

¢
o) = [ % (26)
to find s(¢), and hence from the known R(s), to find R(¢). These values of R(¢) and
- q(¢) are then used in (25), (18) and (20) to deduce Q(¢). The first iteration is completed
by calculating a new ¢(¢) from (9). When these iterations have convergedt, the final
values of R(¢) and ¢(¢) are used in (21) and (25) to complete, without further iteration,
the design of the aerofoil. Equation (19) can be conveniently satisfied by varying one
of the parameters e, a or b during the iterative process. Finally the aerofoil co-ordinates

follow from
¢ ¢ o3
‘”=f cosadda, y=fsm0d¢. @)
q q
4. Special cases. (a) Flow about a given symmetrical aerofoil.

From Fig. 1 it is apparent that the solution of this problem is obtained by letting ‘a’
tend to zero. In this case Egs. (18) and (19) yield

(25)

b b
[ asen =0, [ grasen =o.
¢e=—s $r=—c

Subtracting (18) from (16), taking the limit as ‘a’ tends to zero, and making some use
of (28) we find

sy = =2 [ log (6% — w) dote.

tExperience with the same type of integral equation leads the author to believe that practical con-
vergence is almost certain.
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These three equations are the basis of the author’s method [4] of calculating the flow
about given symmetrical aerofoils.

(b) Usual equation of aerofoil design. This is arrived at by putting e, b = a in the
above theory. If we write ¢* = —a cos v*. Then (18) and (19) become (see [1] and [2])

f Qy*) dy* = 0, f Qy*) cosy* dy* = 0,
0 0

while on the aerofoil surface Eq. (16) reduces to the design equation [2]
1 7" 1 1
(@) = ——f Q(*r*){cot 5 (* — ) — cot 5 (v* + 7)} dy*.
27|' 0 2 2

(c) Riabouchinsky flow. Riabouchinsky flow [5] may be defined as flow past two solid
bodies between which there is a bubble or cavity at constant pressure. All the steady
symmetrical Riabouchinsky flows can be calculated from equations (16), (18) and (19)
by putting d2(¢*) = 0. (Unsteady Riabouchinsky flow is discussed in British A.R.C.
Current Paper No. 149.)

(d) A simple family of ‘roof-top’ aerofoils. ‘Roof-top’ aerofoils are those for which
the specified velocity distribution is composed of two linear segments. Such aerofoils
can be designed by putting dQ(¢*) = k,, (—a < ¢ < h), = k;, (h < ¢ < a), where k,
and k, are constants, in Eqgs. (18)-(21).

For the simple example which has &, = k, = 0, and 6 constant in —e < ¢ < —a,
a < ¢ < b, except for discontinuities of ir and 37 at the leading and trailing edges
respectively, these equations yield

_ (e = l>1/2 T . (b _ 1)1/2

Q. = —tanh (e 1 ﬂ_tanh v+ 1) (28)
I B 02 — 1)1/2
T (b"’ -1/ (29)

(&:L_D_<1_+@}"’ Tt {g; (1 + ¢)

1 - 1/2
6@) = 5 — tan {<e Y T— & F D1 = ¢>} » 1ol <1, 60

and

(g__:l—_ _1_)_((/,__—_*__2}1/2

Qo) = Q. + ® tanh” {(e e =1

T S =D+ Dl
+7r(Rtanh {(b+1)(¢_1)} , || > 1, (31)
where ‘a’ has been put equal to unity without loss of generality. With the aid of (29)
we find that the left hand sides of (23) and (24) reduce to 1/(e + 1) 4+ 1/(b — 1), and
1/(¢ — 1) + 1/(b + 1), respectively. Thus, .since e, b > 1, it follows from (23) and
(24) that while an infinite adverse pressure gradient does not occur at ¢ = —1, it is
unavoidable at ¢ = 1.

Typical values of  and b for a modern aerofoil would be r = 12° and b = 2.5, and
from (29) and (28), e = 1.0117 and 2, = —0.1287. Suppose M. = 0.7, then from Egs.
(9) and (10) we find that the constant velocity of the roof-top is ¢ = 1.22U. We shall
omit further details of this example, but it should be noted that the flat nose occupies
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less than 0.49%, of the total potential difference over the chord, so that it could be rounded-
off with but little effect on the velocity distribution. Eqs. (28)-(31) thus provide a com-
paratively quick method of designing roof-top aerofoils.

An alternative method of design would be to let e tend to ‘a’ and then specify the
velocity distribution in the interval between the nose and the beginning of the flat
section of the velocity distributions so as to obtain the desired nose-radius of curvature [2].
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