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Hence, if (11) is satisfied, then
lim inf N*(¢)/#* = 0.
t—co
Since this contradicts the necessary condition (5), the proof is complete.
5. In view of the first of the conditions (8), it is worth mentioning what happens
to each of the three stability properties, considered above, if (1) is replaced by a differ-
ential equation

z'" + g()z = 0 (13)
which is a small perturbation of (1), in the following sense:
[ 170 - gy 1t < . (14

Under the assumption (14), both (1) and (13) are stable in the sense of definition
(1) if either of them is, and both (1) and (13) are stable in the sense of definition (ii) if
either of them is. Both of these criteria (which are quite independent, since (3) does not
imply (2)) are contained, as corollaries, in known® asymptotic correspondences between
the solutions of (1) and (13), when (14) is satisfied. The situation is changed if (i) or
(ii) is replaced by (iii). In fact, if f(f) = ¢ 2, then (1) is oscillatory (since (9) then holds
for an @ > 1/4), and (14) is satisfied if g(¢f) = 0, but (13) is then non-oscillatory.

5A. Wintner, Amer. J. Math. 69, 261-265 (1947).

ON PERTURBATION METHODS INVOLVING EXPANSIONS IN
TERMS OF A PARAMETER*

By RICHARD BELLMAN (Rand Corporation)

Summary. It is shown by means of some examples from the theories of linear
algebraic equations, linear integral equations and nonlinear differential equations that
the effectiveness of the method of expanding a solution in a power series in terms of a
parameter may in many cases be greatly increased by expanding in terms of a suitably
chosen function of the parameter. This is particularly the case when the physical setting
of the problem allows only positive values of the parameter to enter.

1. Introduction. A standard tool in the theory of functional equations, of both linear
and nonlinear character, is the expansion of the solution as a power series in & parameter
appearing in the equation, or in the boundary conditions. Some typical examples of
equations involving a parameter are

() 4z =\,
(b) xs+xiaiixi=ci; t=1,2---,N,
1 1.1
(© 1@+ [ K@, 9f0) dy = o),
(d) '+ N — Dz’ +z2=0
(e) ' + x4+ N = 0.
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Two possibilities arise when the formal expansion for the solution is obtained. The
expansion may be an asymptotic series, convergent for no non-zero value of the param-
eter, or it may be a power series possessing a non-zero radius of convergence. We shall
be interested here only in the case where there is a finite radius of convergence, although
the idea we present is equally applicable to the case of an infinite radius of convergence,
in which case we may wish to speed up the convergence of the series, or to the case of
an asymptotic series, in which case we may wish to improve the best possible approxi-
mation.

As we know, the radius of convergence of a power series is determined by the distance
from the origin to the nearest singularity of the function. Consequently, even if we are
concerned with determining the numerical value of a function in a region in which it
has no singularities, we are very often prevented from using the power series for this
purpose because of singularities which occur in regions of no interest to us.

Let us give some examples which we shall discuss again below. If X is small and positive
the positive root of (1.1a) has a power series expansion of the form

_ _ . _ ___]_- (1 +4)‘)1/2.
=A-N+ ) 2

This expansion may only be used up to the value A = 1/4, because of a singularity at
A= —1/4.

Similarly, if we consider the vector-matrix form of (1.1b) z + Az = ¢, the Liouville-
Neumann solution

+ (1.2)

z=c—Nc+ - 1.3

will have a finite radius of convergence determined by the location of the roots of the
determinantal equation | I + AA | = 0. If we take A to be a positive definite matrix,
-and A a positive number, there will always be a unique solution of (1.1b) for A sufficiently
large. Nevertheless, we cannot use the power series in (1.3) to determine the solution
directly.

The same remarks may be made concerning the linear integral equation in (1.1c).

Turning to the differential equations above, the first of which is the famed equation
of Van der Pol, and the second the normalized equation of a nonlinear spring, it is known
that both equations possess periodic solutions for all positive values of A\, and that these
periodic solutions may be represented as power series in \, for small values of \, heuristic-
ally by means of Lindstedt technique, or rigorously by means of the small-parameter
Poincaré method, see Stoker, [5], or Lefschetz, [2].

These power series will not converge for all values of A. In the Van der Pol case,
this is due to the fact that the equation does not possess a periodic solution for large
negative values of A. In the case of the nonlinear sprmg, this is due to the existence of
other singularities of the function.

A question of some importance, from both the theoretical and computational point
of view, is whether or not it is possible to obtain expansions which will be valid for all
positive values of A, and, if not that, then at least valid for larger values of the positive
parameter than are permitted by the power series expansion.

We shall see that this is rigorously possible in the algebraic cases, and in the case
of the linear integral equation, where the analytic character of the solution is readily
obtained, and plausibly possible in the case of the Van der Pol and nonlinear spring
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equations, where the analytic character of the solutions is less known. Actually, since
the nonlinear spring equation may be solved explicitly in terms of elliptic functions,
an exact investigation would not be too difficult in this case. However, we shall not
include it here, since we are primarily interested in presenting and illustrating the basic
principle in as simple and direct terms as possible.

The fundamental idea is that of expanding the solution as a power series in another
variable p which is itself a power series in A, p = ¢(A).

We are essentially, then, presenting a method of analytic continuation. Many
examples of this exist in the literature. The classical treatment of the hypergeometric
equation exemplifies the general technique, and a particular version will be found in
Shohat’s generally overlooked paper [4] on the Van der Pol equation. Unfortunately,
the idea is a bit obscured by the introduction and stibsequent elimination of a fictitious
parameter. For a closely related discussion of summability properties of the Liouville-
Neumann series obtained from the linear integral equation in (1.1d) see [1].

It is clear that it is easy to multiply examples of physical problems where this tech-
nique may be of use. An example of particular importance, which we shall treat else-
where, is the theory of shock waves of varying strength. As the strength increases, the
ordinary perturbation techniques may be expected to be less and less effective. Here the
physical background restricts us in a very natural way to the consideration of positive
values.

In passing, let us note that the Lighthill technique, see [3], may also be profitably
modified in this manner in many cases. We shall discuss this topic in further detail
at a subsequent time.

2. A simple algebraic example. Let us begin with an example which, if very simple,
has the merit of illustrating the idea very clearly. Consider the problem of finding a
power series development for the positive root of 2> + = = \, where A > 0. Since we
have an explicit formula for the solution in this case, we know that the power series
for z in terms of \, z = A — A\ + -- -, converges only for A\ < 1/4. Let us perform the
.change of variable, p = A/(1 + 4A). Then 1 4+ 4x = 1/(1 — 4p) and

e R (kDRGSR @.1)

“The radius of convergence in the p-plane is 1/4. Hence the series converges as long as
[ A/(1 4+ 4)\) | < 1/4, which means that it converges for all positive A.

The success of the method in this case is due to the fact that we know so much about
the analytic character of z as a function of A. Suppose that we had merely set p equal
to A\/(1 + A). Then

1,1 uﬁ)‘”
z = 2+2<1_p 2.2)
which means that the radius of convergence in the p-plane is 1/3. Hence as long as
| A/(1 + \) | < 1/3 the expansion for z in terms of p will converge. Since 1/4/(1 + 1/4) =
1/5 < 1/3, we see that the next expansion will allow larger positive values of A than
before.

3. The solution of z + AAxz = ¢. Let us now turn to a discussion of the solution
.of the system in (1.1b). The following remarks will apply equally well to the solution
.of a linear integral equation, such as one in (1.1c), and indeed are abstractly identical

if we regard A as a positive operator.
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The Liouville-Neumann solution of z + Mz = ¢,
=c¢ — MMc + NA% — .-, (3.1)

obtained by iteration, converges within the circle, | A | < 1/|A, | where Ay is the, or a,
characteristic root of largest absolute value.

If we take A to be a positive matrix, in the sense below*, the classical theorem of
Perron asserts that there is a unique root of largest absolute value which is positive and
simple. By a change of variable we may consider this root to be unity.

To take advantage of the positivity of A, and the fact that at the moment we are
interested only in positive values of A, let us make the change of variable, p = A\/(1 + ),
or A = p/(1 — p). The equation for £ becomes

(1 — p) + pAz =c — ¢p 3.2)

with the power series solution

z=c— Acp + 22 p"(A — D(— Ac). 3.3)
Since the characteristic roots of A — I'are\, — 1,k = 1,2, --- |, where )\, are the

roots of A, we see that the absolute value of any root of A — I is less than 2. Hence
the radius of convergence of the series in (3.3), considered as a series in p is greater
than 1/2. Since A/(1 + A) = 1/2 at A = 1, we see that in any case we have enlarged
the set of positive values of A which may be used for the series expansion in p.

If, in addition to A being positive, it is also positive definite, then all of the charac-
teristic roots of A will be positive, which means that 0 < 1 — A\, < 1, for all k. Hence
the series in (3.3) will converge for | p| < 1, or | A/(1 + M) | < 1, which includes all
positive values of A.

In general, we would like to have the ratio of the root of largest absolute value to
the root of next largest absolute value as large as possible, in order-to speed up conver-
gence. We can accomplish this by iterating in the usual fashion a finite number of times
before introducing the above change of variable. For example, iterating twice, we derive

= ¢ — NMc + NA% — \*4%: 3.4)
or
z + NA%r = ¢ — Nc + VA%, 3.5)

where we now consider A\* to be the new parameter.
4. The nonlinear spring. Let us now turn to the discussion of nonlinear differential
equations, considering as a first example the equation

' +z+N=1, 20 =1, z’'(0) = 0. (4.1)

Following the ideas of Lindstedt, see [2], [4], [5], to obtain a series expansion for the
periodic solution with the above normalized initial conditions, it is necessary to take
account of the fact that nonlinearity affects not only the amplitude, but also the fre-
quency. This corresponds to the fact that while linear equations have fixed singularities,
nonlinear equations in general have movable singularities, see [3].

Hence we make an initial change of variable, s = #v, where v is a parameter depending

*A matrix A is called positiveif ag; > 0, (5,5 = 1,2, --- , a).
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upon A. The new equation is

v’z +z 4 A =0, (4.2
which we write in the form
W)’z + Nz + \%2° = 0. (4.3)
Tetusset p = A/(1 + A), N = p/(1 — p), and
=p+cp +cp + - (4.4)

since we want v to be 1 when A = 0. We also set

z = coss + pu,(s) + pus(s) + --- (4.5)

and substitute in (4.1). The conditions that «, , u, , and so on, be periodic functions of s
‘with period 27 will determine the coefficients in the expansion in (4.4), as in the usual
application of the Lindstedt method. The initial conditions, %,(0) = %/(0) = 0, will
‘then determine the function u,(s) for7 = 1,2, 3, --- ’

It is useful to observe that the first approximations obtained from this method
and the usual method will agree up to first degree terms in X. Consequently, a great
-deal of arithmetic work can be saved by using previous results. Furthermore, where
previous perturbation techniques have carried the approximation to higher terms,
‘these series can be transformed to yield the series above.

The calculations indicated above are straightforward, and as always laborious.
‘Computations very kindly performed by George Waters yield the following values
for the coefficients in (4.4),

¢, = 1.37500
= 1.
Cs 66797 (4.6)
¢, = 1.91845
Cs = 2.14083

These coefficients yield a value of 1.24+ for v when A = 1, as compared with » = 1.28
obtained from a REAC computation.

Let us observe in passing that when the coefficients increase as gradually as those in
(4.6), a crude extrapolation will yield values of ¢, and ¢; which will considerably decrease
the error made in breaking off the series after five terms. Furthermore, if we are interested

in the value A = 1, it is probably better to extrapolate the values of ¢,(1/2)" based upon
the known values n = 2, 3, 4, 5.

5. The Van der Pol equation. Shohat expansion. Turning to the Van der Pol
equation, the same change of variable as before yields the equation

)’z + )N’ (@® — Dz’ + Nz = 0. (5.1)
Setting
A=p/Q=p=p+p+o+ -,
MW =p+cp +eap’ ot + -0, (5.2)
T = coss + wu(s) + wu(s) + -+,
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the Lindstedt procedure furnishes the following values
¢ =1, ¢c; = 15/16, ¢, = 13/16.

From the following table, reproduced from Shohat’s paper cited above, it is tempting
to conjecture that the Shohat series converges for all values of A which are positive.
If so, the series should be more widely known.

) N v computed using (5.2) v (Van der Pol)
.33 .98 .99
1.0 .93 .90
2.0 77 .78
8.0 .35 .39
10.0 .30 .31

The Van der Pol values were obtained using graphical techniques.
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ON MIDDLETON’S PAPER “SOME GENERAL RESULTS IN THE
THEORY OF NOISE THROUGH NON-LINEAR DEVICES”*

By J. S. SHIPMAN (Laboratory For Electronics, Inc., Boston, Mass.)

As one of the central results of the title paper [1], Middleton obtained R,(t), the
correlation function for the lth zone, as a function of the input correlation function r,
in the case of the »th law half-wave rectification of narrow-band normal noise (see, e.g.,
his equations (7.14) and (7.15)). Unless one resorts to series evaluations, his formulas
are not particularly suited for numerical computation as they stand, involving as they
do hypergeometric functions which are not well tabulated. For purposes of calculation,
then, a reduction of the hypergeometric functions occurring in the formulas to tabulated
functions must ordinarily be effected, usually by applying the recursion relations among
contiguous hypergeometric functions due to Gauss.

When this reduction is accomplished, the hypergeometric functions in Middleton’s
formulas are seen to be either polynomials in r; or combinations of complete elliptic
integrals of the first and second kind, provided » is an integer (see, e.g., Middleton’s
equations (7.16) and (7.17)). These polynomials and combinations of elliptic integrals
turn out to be, in every case so far examined, special cases of ‘“Bennett functions”
recently tabulated by the author and his colleagues [2, 3]. In the present note expressions
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