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TEARING AND INTERCONNECTING AS A FORM OF TRANSFORMATION*
BY

GABRIEL KRON
General Electric Co., Schenectady, N. Y.

1. Introduction. The mathematical problem under consideration owes its existence
to the increasing complexity of engineering structures, and to a need for the piecewise
formulation and solution of very complex physical systems. The author believes that he
has solved his mathematical problem by experiment (in the manner of Heaviside) at
least for linear systems and has also solved part of his program for certain types of
non-linear dynamical systems. He is, however, an electrical engineer and not a math-
ematician and now wishes to submit his thesis to a mathematical audience in the hope
of arousing interest for a search into the mathematical legitimacy of his reasoning. The
method proposed for analyzing and solving large-scale engineering structures in easy
stages actually works in practice, as many textbooks and articles by scores of independent
workers—both in this country and abroad—testify. There is no doubt that arguments
and discussions, leading to a more rigorous mathematical proof, cannot but help the
extension of the method into the piecewise solution of large-scale non-linear problems
as well.

2. The practical problem. The practical engineering problem the author attacks
is as follows. Given a complex physical system containing mechanical, elastic, electrical,
thermal, etc., subsystems, how can the "equations of state"—as well as the "equations
of solution"—or "formulas of solutions"—be established in easy stages, without manipu-
lating or even writing down the simultaneous equations for the entire system? The
procedure may be summarized as follows:

(i) Tear apart the given physical system into a convenient number of subsystems,
possessing no material contacts or other linkages with each other. (This last considera-
tion is only a convenience, not an absolute necessity.) The two terminals of any point
of tear need not be stationary but may have translations or rotations with respect to
each other.

(ii) Establish and solve the equations of each subsystem separately, as though the
other subsystems did not exist. (One may use any established method of solution for the
subsystems; or one may further subdivide each subsystem and use the present method
to find its solution.) The solutions may be in a numerical or analytical form.

(iii) Then interconnect the equations of solution (or the equations of state) of each
subsystem by a routine procedure, to arrive at the solution (or at the equation of state)
of the original given system.

(iv) The remaining work consists of solving for (or eliminating) the comparatively
small number of constraint forces that appear at the cuts.

3. The theoretical problem. Instead of starting with one given complex system, it
is possible to state the general problem in a slightly different manner.

Let it be assumed that the equations of solution of a large number of isolated systems
are available. The problem is how to utilize the already available partial solutions, in
order to build up the equations of solution of all possible supersystems that may be
constructed by mere interconnection of the given subsystems.
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The following third formulation of the problem will be used presently for a physical
proof. Assume that the equations of solution (or equations of state) of one of the super-
systems have already been established. The problem is how to establish, in a routine
manner, the equations of solution of any one of the other possible supersystems (built
out of the same set of subsystems) by utilizing the equations already derived.

In the proof given below, each subsystem will consist of one electrical coil and each
supersystem will consist of one possible interconnection of five coils. In practical problems
there is, of course, no limitation on the size, physical nature, or complexity of each
subsystem.

4. An invariant procedure. The proposal to tear a system apart into several sub-
divisions and to try to interconnect their equations has occured to many workers in
these fields. The novelty of the present method lies in the proposed systematic and
general procedure for accomplishing the interconnection. In particular, the proposed
procedure enables one to utilize the entire apparatus of tensor analysis to organize the
large variety of physical concepts and that of matrix algebra to organize the large number
of constants into manageable forms.

At the very beginning of his researches into the above problem, the author realized
that to accomplish his objective he must follow a hitherto untrodden path. In particular,
he conceived the idea of treating the processes of tearing apart a physical system and
interconnecting again the component parts, as elements of a "group of transformations"
C°. (to be discussed later). Thus he proposed to formulate or solve a given complex
physical system by the following tensor (invariant) reasoning:

(i) Tear apart the given complex system into a convenient number of independent
subsystems.

(ii) Set up the "equations of state" (or the "equations of solution") of each sub-
system in the form of a tensor equation. In the case of a dynamical system (for example
a group of rotating electrical machines) the tensor equation of state of each subsystem
(each rotating machine) assumes the form

e„ = Ra/ + Laf^ + IV „ i" ~ , (1)

where r„^,T represents a general asymmetrical affine connection, not related to the
metric tensor Laft . For each subsystem the geometric objects and tensors of Raff , Laf
and are independently calculated.

(iii) Represent the interconnection of the various subsystems by a "matrix of trans-
formation" . This matrix is established by simply inspecting the relations of the
variables i" and i" that exist at the points of separation—before and after the tearing—■
as i" = C«- i"'. The components of C°. are often plus or minus unity in simple systems,
but in rotating dynamical systems they are functions of space and time.

The existence of such a non-singular C is the key to the method of tearing. The rest
of the paper elaborates a physical line of reasoning to justify and construct this single
concept for as large a variety of practical cases as possible.

(iv) Transform each geometric object by the aid of C". in a routine manner, following
their laws of transformations. Thus Ra, La and iyT. , „ • of the interconnected
system are established in a routine manner.

(v) The equations of state (or equations of solution) of the resultant system assume
in terms of geometric objects the same form as those of the component subdivisions.
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For instance, the equations of state of the interconnected group of rotating electrical
machines becomes analogously to Eq. (1)

ea- = + Lb.,. ^ /' • (2)

5. Invariance of equations. It should be emphasized that one of the basic require-
ments of the method of tearing is that the form of the equations should remain invariant
in passing from each member of the torn-apart system to the resultant system. (A second
basic requirement, namely the invariance of power, will be treated later on.) It must
also be emphasized that the form of the equations also remains invariant if the component
subsystems are interconnected in any other possible manner. Moreover the invariance is
maintained, even if each of the subsystems is further torn apart into several pieces and
each of these pieces is interconnected into any of a large variety of supersystems.

The method of tearing assumes that between each supersystem and each set of sub-
systems there exists a non-singular matrix of transformation C and that their totality
forms a "group". That is:

(i) Each C has an inverse.
(ii) The product of any two C's is also an element of the group.
(iii) The unit element leaves a system unchanged.
6. "Orthogonal" networks. Perhaps the most important concept in interconnecting

piecewise solutions is the existence of the inverse of every matrix of transformation C.
Because of this property it is possible to pass freely from the equations of state to the
equations of solution and back again at any stage of the analysis. To show the existence

a) "Mesh" network b) "Junction" network c) "Orthogonal" network

Fig. 1. Three types of representation of the same network.

of an inverse C for all engineering structures, the simple electrical network of Fig. la
will be used as an illustration.

The network contains five coils, each coil having an impedance Z (or admittance
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Y). It is well known that the equation of state (or equation of solution) of this network
may be written in two different manners:

(i) By writing two mesh equations ea — (Fig. la).
(ii) By writing three junction-pair equations I" = Yai3Ep (Fig. lb).

[* ]

f] f
[ E]

(3)

For purposes of tearing it will be assumed, however, that it is always possible to
write for the network as many equations of state (or equations of solution) as the sum of
the number of meshes and junction-pairs (that is, as many as there are coils). The
additional large number of "orthogonal" equations may assume either of the following
two forms:

E

[i I]
Zi z2

z3 2iJ

[e E]
Yl Y2'

Y3 F4

(4)

(Orthogonality of the meshes and junction-pairs is proved in Ref. [1], page 974.)
That is, every network and every dynamical system may be described in a more

general manner by assuming not only the active forces (e or 7) but also the external

A)

D)

-Wr

B)

E) "Primitive" network

-Wv-

C)

Fig. 2. Six different interconnections of five coils (stationary, linear graph).
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constraints (E or i) as variables and writing for the system as many equations of state
(or solution) as there are total number of variables. In conventional analysis such a
course is not followed, but in the method of tearing it is necessary to have at least some
of the superfluous equations available.

In order to have the extra equations and extra variables at hand, it is necessary in
the method of tearing always to start the study with the original physical system or a
model of it. The latter always imply all the above variables and all the above equations.

7. Example of stationary networks. Perhaps the simplest possible illustration of a
group of C is given in Fig. 2, in which five stationary, one-dimensional electrical coils are
interconnected in six different manners. (The number of possible interconnections of the
same five coils is much* larger.) The coils may have asymmetrical mutual impedances
between them, and the impedances may be non-linear functions of the currents.

Let it be assumed that the orthogonal equations of state, or the orthogonal equations
of solution, of one of the networks are given by Eq. (4) or by a non-linear generalization
of it. The problem is to establish the analogous equations for any of the other networks
by utilizing the already known equations (4). The author's thesis is that it is sufficient
to establish a non-singular matrix of transformation C between the known network and
the unknown network. With C established, the rest of the work is merely a routine
application of tensor methods.

Selecting any two networks, for instance the two-mesh, one-piece network of Fig.
2A and the three-mesh, two-piece network of Fig. 2F, the matrix of transformation Cp
existing between them may be established in the following way.

Reproducing the two networks in Fig. 3, assume as many current-variables in each
network as there are coils, namely five. That is, assume in Fig. 3a two mesh-currents
(i° , i ) and three junction-pair currents. (Of course, each set of variables may be selected
in a variety of ways.) In Fig. 3b assume three mesh-currents (ia ", % ', i°") and two
junction-pair currents. Plot the path of each current through the network as shown.
(Again the paths may be selected in a number of different ways.)

Consider next each coil in succession and equate the currents flowing through it in
both networks. For instance, considering coil Za , in Fig. 3a the current is i° and in Fig.
3b it is i" — ih' — id' — i'" . Equating the currents in each of the five coils in succession,

•a' •a" 'b" *d" •/''I = l—l — I — %

+ ie' + id' + ir = ic"

i"' - id' = i°" (5)

+ id"

i" + ib + ic — — ib

(The five coils are identified in Figs. 2A and 2F.)
It should be noted that the left-hand relation may be looked upon as Cf iA, trans-

forming the network of Fig. 2E (containing isolated coils only, the so called "primitive"
network) into that of Fig. 2A. Similarly the right-hand relation may be looked upon as
Cf iF, transforming the primitive network of Fig. 2E into that of Fig. 2F. That is, the
above set of equations may be written as

iE = CEAiA = CW. (6)
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A) B)
a) Assumed meshes and junction-pairs

-Wv

 W; 

C) D)

b) Resultant current in each coil

Fig. 3. Transformation between two networks

From this the relation between iA and iF follows as

iA = cicy, (7)

where CAE = (Cf)""1. (This inverse always exists.) Hence the relation between the two
network currents of Fig. 3 is

iA = CUF, (8)
where

CAr = (Cf)-'C? , (9)

CAr =

1 -

-1

-1

1

-1 -1

-1

2 1
-1

1

(10)
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This is the non-singular matrix of transformation from the two-mesh, one-piece
network of Fig. 2A to the three-mesh, two-piece network of Fig. 2F. With its aid (or
with the aid of its inverse), any physical entity or equation (such as Eq. 4 or its non-
linear generalization) related to Fig. 2A may be transformed in a routine manner to
that of Fig. 2F, or vice-versa.

8. Existence of the "primitive" network. When only one network is given (say Fig.
2F) and it is necessary to establish its equation of state, or equation of solution, the-
author advocates that the given network first be torn apart into subdivisions for which:
equations of state can easily be established. These subdivisions happen to be the indi-
vidual "coils" for which the equations of state may usually be obtained by mere inspec-
tion. The collection of isolated coils is called the "primitive network" shown in Fig. 2E.

The step from v rf equations of the primitive network, say ea = zapi13, to those of the
given network, €„■ = , requires only the establishment of a C. Since in most
practical problems the given network needs to be looked upon either as a pure mesh
network or as a pure junction network, it is sufficient in such cases to establish a rec-
tangular, thus singular G. Nevertheless the non-singular C always exists.

Any argument or proof based upon the existence of only a singular C may corroborate
the formulae of the author, but are unacceptable as proofs of his method. The similarity
of the singular C used in transforming from the primitive network to a given "mesh"
network, to the singular C arising in "going from branches to meshes", is purely coinci-
dental. The branches do not possess an equation of state of the form ea = zal,iff, but
something more complicated. On the other hand, the method of the author is restricted
to the use of only one single invariant equation, under any type of physical or hypothetical
transformation.

9. More complicated examples. A more complicated group of C exists in the presence
of rotating electrical machinery, Ref. [5], The ultimate element into which a system can
be torn apart now is a two-dimensional cylindrical layer of winding (Fig. 4), in which

a ) Cross-section of a
layer of winding

id

Is

b) Representation of a
stationary winding

c) Representation of
rotating winding

Fig. 4. Two-dimensional cylindrical windings of rotating electrical machinery.

the current-density wave is sinusoidal in space along the cross-section. The currents are
removed through stationary brushes or rotating slip-rings. (One element of i" represents
now an angular velocity <o.) Fig. 5 shows three different interconnections of three such
layers of windings (one stationary and two rotating layers). The simplest arrangement
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is shown in Fig. 5B (the "primitive" rotating machine) in which all reference axes are
stationary, are at right angles in space, and all windings are electrically isolated. The
author has used this machine as the starting point for the analysis and solution of all
other rotating electrical machines used in industry. The equations of performance of

Fig. 5. Three different interconnections of three windings (rotat.ag, two-dimensional graph).

any machine may be found from those of the primitive machine by merely establishing
a C between the two machines.

In a stationary elastic beam structure (Fig. 6, see also Ref. [3]), the ultimate sub-
division (one beam) has twelve degrees of freedom (six for each end). More complicated
examples of engineering structures that could be torn apart into a collection of smaller
structures, could be cited indefinitely.

10. "Tearing" as a sub-group of affine transformations. Of course, simultaneously
with the above C—representing actual tearing—many other transformation matrices
also have to be used, in order to introduce hypothetical and physical reference frames
that facilitate the tearing and the analysis. A reference frame, in which the tearing
assumes a simple form, is usually not the best reference frame for the analysis itself.
Practical exigencies of a problem (like knowing only real power in an electrical trans-
mission system, instead of current or voltage) force the introduction of still other sets
of reference frames.

Most of the mathematical endeavors of the author have been concentrated upon
fitting many of these physical and hypothetical transformations into the framework of
tensor calculus. The need for considering "tearing" and "interconnecting" also as a
subgroup of the group of affine transformations is thus dictated by the appearance of
so many other types of more conventional affine transformations in the analysis of complex
physical systems.

11. Practical considerations. In order that the solution of supersystems be in a
practicable form, it is also necessary that all partial solutions of the subsystems involve
far fewer non-zero elements than do the conventional solutions. Furthermore, the
method for interconnection of the partial solutions should be comparatively simple and
fast. It is believed that the suggested procedure satisfies these auxiliary—nevertheless
important—practical considerations.

To avoid any misunderstanding, the word "solution" refers not to a particular
numerical solution of the variables, but to a general solution in which the variables still
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occur in a general unspecified form. For instance, Ea = Za^IB (a matric equation) is
understood to be a general solution of I" = Y"fiEp if the elements of ZaS alone are
numeric. For any particular value of I" a corresponding set of Ea may be calculated.
That is, the method of tearing is essentially an inversion procedure and the method
should be evaluated accordingly.

o) o) "Primitive" system c)

A) Three different interconnections of seven beams

B) Stationary, six-phase, linear graph of o structure

Fig. 6. Elastic structures.

It will be shown in another publication that the analytical solution of problems, with
all parameters factored out, also becomes feasible by the use of the method of tearing.

In addition it must be emphasized that it is not the intention of the new method to
compete with established methods of inversion (much less with methods of solution).
The suggested procedure starts rather with "first-stage" solutions, already arrived at,
and attempts to build up in successive stages large supersystems and their solutions.
The new method intends to start where other methods end. Any overlapping in the first
stage of solution is purely an educational or developmental accident. In presenting the
subject this overlapping is unavoidable.

12. Physical versus geometrical model. When only a set of equations is available
(say a set of partial difference equations, or the dynamical equations of Lagrange) then—
in order to use the method of tearing for solving the equations—the author's first step
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is to replace the set of equations by a physical model and then tear the latter apart,
instead of the equations themselves. The author prefers to replace the given equations
by a linear or higher dimensional graph (topological model) and to use electrical-circuit
terminology in tearing and analyzing the model. Of course, the geometrical model (if
•correctly constructed) also contains all the superfluous variables and equations that the
corresponding physical system does. The electrical-circuit exists only on paper and in
general cannot be (and need not be) physically realizable.

The electrical-circuit appearance and terminology of the author's models should not
mislead the mathematician into believing that he must become an electrical engineer in
order to follow the author's reasoning. On the contrary, it is the author who tries to
become a topologist and solve topological problems of "cells" and "chains" as best he
can. The author believes that the essentials of his method could be expressed in the
language of linear and higher dimensional graphs (in the manner of Weyl, Ref. [10])
without any electrical connotations.*

13. Tearing versus partitioning. It should be especially noted that it is not the set
of equations that is being torn apart, but the physical system itself, or a model of it.
Consequently the method of tearing has nothing whatever to do with the "partitioning"
of matrices, which tears the equations themselves apart and not the physical system.
The mutually exclusive nature of the two methods is clearly illuminated by the fact
that the partitioning of matrices does not contribute any new information about the
physical system, but the tearing apart of a model does. The method of tearing introduces
additional variables,—namely the constraints (forces and velocities) appearing at the
points of tearing—and their corresponding equations. (A more detailed comparison
appears in Ref. [3]).

It is the appearance of apparently superfluous variables and superfluous equations,
that differentiates the method of tearing from other conventional methods of solving
physical problems. Surprisingly enough, these extra variables and equations do not
complicate, but rather simplify, the solution of physical systems and to a far greater
extent than one would expect.

14. Non-linear systems. For many years the author tried to achieve the inter-
connection of the "equations of state" of subsystems [5-9]. It is only during the last
few years that he has also experimented systematically with interconnecting the "equa-
tions of solution" of subsystems. In interconnecting equations of state no basic difficulty
existed in dealing with either linear or with certain special non-linear dynamical systems.
Similarly, in interconnecting equations of solution, no basic difficulties arise with linear
dynamical systems.

The author has published only one simple example for the interconnection of piece-
wise solution of non-linear systems [4]. This example involved the inversion of Taylor's
series with several variables and its interconnection. Solutions for elastic beam structures
(such as Fig. 6) with non-linear (plastic) characteristics in each beam have also been
obtained by successive approximations. However, many difficulties lie ahead in inter-

*Since the writing of this article the Author's attention was called to a paper by J. P. Roth entitled
"An application of algebraic topology to numerical analysis II. The validity of Kron's method of tearing"
(to appear in the Proceedings of the National Academy of Sciences). The paper identifies the following
concepts of combinatorial topology that connect with the method of tearing: "Homomorphisms of
homology and cohomology sequences induced by simplicial mappings of 1-dimensional complexes."
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connecting the solutions of more general types of non-linear systems. It is hoped that if
competent mathematicians shed more light upon the pathway the author has been
treading, the interconnection of many types of non-linear solutions will be facilitated.

15. The invariance of power. The requirement that the form of the equations of
each subsystem and of each interconnected system be invariant, is not sufficient to
establish the laws of transformation of the various geometric objects. An additional
requirement is needed. The author has made the discovery that a linear form, namely
the total power input i"ea (the product of generalized forces ea and generalized velocities
i") also remains invariant when a given number of subsystems are interconnected into
any possible super-system. Because of the existence of the relation i"ea = i"'ea. between
any two systems, the usual laws of transformation of all tensors and geometric objects
follow automatically.

The above invariance is another key to the theory of tearing. The relation must
exist, since the method of tearing does work in practice. But to prove the invariance of
power in torn-apart systems in an unequivocal, scientific manner, acceptable to math-
ematicians, is not a simple matter.

The author has a plausible proof that appeared in Ref. [4], pp. 412-414 and 428-435,
valid for stationary electrical networks only. If the proof is correct, a generalization of
this proof to general physical systems should follow without difficulty. Naturally the
proof is only a physical proof and not a mathematical one. Since the author is not a
mathematician, he has never felt qualified to give a mathematical proof. However, all
the assumptions he has made to prove his method to his own satisfaction have brought
additional, useful contributions and so he feels that his proof is at least along the right
track. In the following the author's physical proof will be outlined.

16. More general equations. In order to prove the invariance of power in any
dynamical system, it is assumed that the most general form of the equations (of state
and solution) must contain sets both of impressed and constraint forces (e, E) and
velocities (i, I) along each degree of freedom. For instance, for Fig. 7, the equations given

Fig. 7. Three points of view of a general network.
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in Eq. (4) become generalized to:

r«i + Ei
\_e2 + E2_

[i'i + I\ + I2

z 1 z2

L 2.1 z* J

i\ + 11

_i2 + I2.

+ Ei e2 + E2

Yi V2

f3 r4 J
(11)

If the sets of mesh and junction equations are combined into one set, the above
equations of state and solution may be written in the form

e„ + Ea = Zaptf + 7s),

i" + r = Y'\E„ + e),
containing all possible forces (ea and Ia) and constraints (i" and Ea) along each of the
topologically possible reference axes. In a similar manner, the dynamical equation (1)
may assume the most general form

ea+Ea= + I') + Lat + f) + T$y,a(is + I*)(iy + P), (13)

where a and /3 denote not only the customary generalized axes of active forces, but also
their dual axes of constrained forces.

Of course, it is never necessary to write down all the above equations with all the
variables. Constructing a correct physical model is equivalent to having available (having
written down) all the above equations in a tensor form. During the process of tearing
and interconnecting the model, the engineer is enabled to write down only the absolute
minimum number of equations and variables that he happens to need and to write them
down only when needed.

17. Invariance of total power. In the presence of the four sets of variables, it is
always possible to view every orthogonal network (Fig. 7a) in two other ways:

(i) As an "all-mesh" network (Fig. 7b) in which every impedance Z is short-circuited
upon itself through a voltage, and forms a mesh.

(ii) As an "all-junction" network (Fig. 7c) in which every admittance Y is open-
circuited and forms a junction-pair.

No matter what configurations are formed from the same n coils, the total current
i" + I" in each coil always maintains itself constant (since each coil always remains
shorted through the same voltage). Simultaneously, the total voltage drop ea + E„
across each coil also always maintains itself constant (since each coil always remains
open). Consequently the total power in each coil—and in the entire network—remains
constant, no matter what networks are built out of the same coils. That is, for all possible
configurations of the same n coils the following relation is satisfied

(«„ + Ea){ia + D = (e„. + Ea.W + I''). (14)

It should be recalled that the non-singular matrix of transformation C between two
networks was established in Eq. (5) by assuming that in each coil of both networks the
total currents are equal.

This invariance of a linear form and the invariance requirements of the form of
Eq. (12), enable one to establish the law of transformation of all tensors and geometric
objects that arise in the method of tearing. Thus the author's thesis, that the processes
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of tearing and interconnecting physical systems can be viewed as a subgroup of the
group of affine transformations, appears plausible.

From a practical point of view the above thesis not only opens up the possibility of
the piecewise analysis and solution of very large and otherwise unmanageable engineering
structures, but it also allows one to concentrate all the resources of the calculus of tensors
upon such studies.
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