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SOLUTION OF LINEAR EQUATIONS BY DIAGONALIZATION OF
COEFFICIENTS MATRIX*

BY

E. G. KOGBETLIANTZ
International Business Machines Corporation

Introduction. To solve a system of linear equations Gx — g, where G is a complex
matrix, usually an equivalent system Hx — h is formed in which H = *G'G is Hermitian
and h = *G'g. The solution of Hx = h is performed again by replacing its complex
equations by real ones

Au — Bv = m, Bu + Av = n,

where H = A + iB, x — u + iv, h = m + in. Thus, finally the order of G is doubled
which is undesirable even when electronic computers are used.

It is preferable to solve Gx = g without doubling the order of G and this can be done
inverting the complex matrix G by diagonalization. If such two unitary matrices U, T
can be formed, that

*U'GT = K,

where *U' denotes the conjugate transpose of U and if is a diagonal matrix, then
G-1 = TK~l*U' and the direct solution of Gx = g is obtained:

x = CTlg = TK~l*U'g.

This form is very convenient since the multiplication of matrices is performed by an
electronic computer in almost no time.

The unitary matrices U and T are known to exist (for example modal matrices of
G*G' and *G'G), but the question how to form them for a given complex matrix G of
large order is a difficult one. In what follows they are formed as infinite convergent
products of simple unitary matrices un{zn) which represent plane rotations through com-
plex angles z„ = 9n + i<t>n . Therefore, their practical computation is easy for electronic
equipment and it yields a new method of solution of linear systems.

When this method is applied to a Hermitian system Hx = h or to a symmetric
system of real equation (particular case of Hx = h) the diagonal matrix K into which
H is transformed has as its elements the characteristic roots (Eigenvalues) of H, while
U = T yields the characteristic vectors, because K = *U'HU. The same holds for skew
symmetric Hermitian matrices [(ar, + t'6r,)] with br, = b,r , aT, + a,r = 0.

To achieve the diagonalization of a given complex matrix A = A0 a sequence [A„]
of its transforms is constructed, the transform A,- being formed from A,--! by right and
left multiplications:

Aj = *uKf#)J[l_1MI(«)). (1)
Thus

An = *U'nATn and K = lim A„ ,
with

n n

T = lim T„ = lim n • t/ = lim XJn = lim "*(&) ■
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The parameters z, = 0,- + i<t>j and = £,• + iv,- in (1) will be chosen at each step
in such a way that K is diagonal. In practice finite products *U& and TN are used, N
being sufficiently large to insure a good approximation AN to K. This means that all
off-diagonal elements of AN (which tend to zero when N —»°°) are already less in absolute
value than a prescribed quantity, for instance less than 10~10.

1. Unitary matrix TJ{z). Let z' = 6 — i<j> denote the conjugate of z = 6 + i<t>. To
form ukm(z), a matrix of order n X n, we replace in the identity matrix of the same
•order ((5,,)) the four elements Skk = 1, Skm = 0, Smk = 0, and <5mm = 1, where 1 ^ k <
m n, by the elements y* cos z, —7* sin z', yi sin z and 7* cos z' respectively of the rota-
tion matrix through a complex angle z, the symbol 7 denoting the hyperbolic secant of
24 : 7 = sech 2<f>. Thus, ukm(z) is defined as follows:

ukm{z) -

*1 I I
 71/2 cos z 7I/2 sin z' 

I 1
fcth row

with row 7,/2 sin z 71/2 cos z' 

I I U
1 1
I I

fcth mth
column column

It is unitary since 7(|cos z |2 + | sin z |2) = 1. The matrices w,(z,) and = *m,(f')
in (1) are in fact m,(z,) = ukimi(z,), = *uklml({') since not only zt , f, but also k,-,
m,- vary with j.

Four conditions needed to determine z and f are obtained as follows. Transforming
A — [(ar,)] into C = [(cr,)] = *ukm(£')Aukm(z), we make vanish in C the two elements
ckm and cmh(k < m) and this gives four real equations with four real unknowns 6, <j>, £
and 7). The sequence [4W] is cyclic, each group of n(n — l)/2 consecutive steps forming
a cycle. In a cycle we make vanish in a prescribed order one after another all n(n — l)/2
pairs of off-diagonal elements symmetrical with respect to the principal diagonal.

A particular pair vanishes only once during a cycle. It reappears again in the next
step, but weakened since—as will be shown later—its modulus, when it reappears, is
diminished in an average ratio of 1 to 2_i. At each step the sum of squares of moduli of
diagonal elements increases, the amount of vanishing elements | akm |2 + | amk |2 being
transferred into the principal diagonal. Since in our transformation the norm of A is an
invariant, this means that at each step the sum of moduli of off-diagonal elements
diminishes. After a certain number of cycles the moduli of all off-diagonal elements
become less than a prescribed, arbitrarily small, but fixed, quantity. In other words,
the off-diagonal elements tend uniformly to zero when the number N of steps increases
without limit.

The convergence of the sequence [^4^] to a diagonal matrix K is not sufficient to
insure the practical importance of our diagonalization method. Should its speed depend
on the number p of cycles already performed, decreasing when p increases, it might be
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practically impossible to reduce the moduli of off-diagonal elements below a prescribed
quantity.

It is a favorable circumstance that the speed of convergence of our method does not
depend on the number of steps already performed. On the average it remains constant
however large the number of cycles becomes: as will be shown later, the moduli of off-
diagonal elements decrease in the ratio of one to e~i per cycle.

Thus after, at most, 46 cycles the average modulus of all off-diagonal elements of
An , where N — 23n(n — 1), will be less than Me'23 ~ ikflO-10, M denoting the largest
modulus of off-diagonal elements of A.

2. Computation of C. We formulate now the rules for the numerical computation
of elements cr, of C = *ukm(£')Aukm(z), omitting the derivation of these rules. For any
z and f we have the following invariants:

CkkCmm ^knfimk @/kk@/mm Q'kmQ'mk )

! cjt |2 + | Cjm |2 = | o,i |2 + | ajm |2, | Ckj |2 + | cmi |2 = | akj |2 + | amj |2, (2)

I ckk |2 + | Ckm |2 + I Cmk |2 + | cmm |2 = | akk |2 + | akm |2 + [ amk |2 + | amm |2. (3)

Equations (2) and (3) prove the invariance of the norm: ||C|| = ||A||. Equation (3)
for ckm = cmk = 0 becomes

akk |2 + | <xkm |2 + | amk |2 + | amm 12 = I ckk |2 + | c, rmm

which shows that the amount | akm |2 + | amk |2 of off-diagonal terms which vanish in C
is transferred into the principal diagonal. Denoting the real and imaginary components
of a complex number z by z' and iz" we first form 33 real numbers in six steps.

1) M = (a'kk + <0/2, r = (ail + <'„)/ 2,

P = (aL - a'm J/2, p = (.all, ~ <0/2,
N = (a'km + a'mk)/2, n = (a'k'm + a'Jk)/ 2,

Q = (aim - a'mk)/2, q = (a'k'm - a'Jk)/2.

2) A = PM + pr — (NQ + nq), B* = MN + rn — (PQ + pq),
A* = PM + pr + (NQ + nq), C = rQ — qM + (pN — nP),
B = MN + rn + (PQ + pq), C* = rQ — qM — (pN — nP).

3) w = (A2 + BY2, w* = (A*2 + B*2)1'2, R = (w2 + C2)1/2 = (w*2 + C*2),/2;

cos 26 = 5 = A/w, cos 2? = 5* = A*/w*,
4)

sech 2<£ = 7 = w/R, sech 2ii = y* = w*/R.

5) sin e = Sl = <r(£)[(l - 5)/2]1/2, sin £ = s? = <r(B*)[(l — 5*)/2]1/2,

cos d = Cl = [(1 + 5)/2]1/2 > 0, cos { = cf = [(1 + 5*)/2]1/2 > 0,
(4)

71/2sinh$ = s2 = a(C)[(1 - 7)/2]1/2, 7*1/2sinh„ = sf = <r(C*)[(l - 7*)/2]l/2,

71/2cosh«^ = c2 = [(1 + 7)/2]1/2 > o, 7*1/2cosh„ = d = [(1 + 7*)/2]1/2 > 0.
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Here the symbol a(v) denotes the sign of a real number v, so that <r(v) = v/\ v if v 0,
while c(0) = 0 by definition. All eight numbers computed in (4) are less in absolute
value than one. The two cosines Cj , c* are positive, acute angles being chosen as 6 and £.

6) G = (M + P)ClC? + (M — P)sls*l + (N + Q)«,c? + (N - Q)Cls? ,

g = (r + p)Clct + (r — p)s,sf + (n + gKcf + (n - q,

H = (M - P)c,c? + (M + P)SlS? - {N - Q)slC? - (iV + Q)c,a? ,

h = (r — p)cict + (r + p)s,sf — (n — 9)s,c? - (ra + .

Now cit and cmm are:

(7 + 7*)c*t = 2[((? + ig)c2c% — (H + ih)s2s*2],

(5)

(7 + 7*)Cmm = 2 [(if + ih)c2c* - {G +
(6)

Among the off-diagonal elements of C only those in the kth and with rows and columns
are to be computed since cu = ait for i,j 5^ k, m. For each value of j 9* k, m, 1 5= j 52 n,
the elements cjt, cim , cki, cm, are computed at a time as a group. First eight real numbers
a, X; a*, X*; /J, n; f)*, n* are formed:

a + tX = Citt,* + Siflim , a* + iX* = c*aki + s\ami ,

0 + in = Cidim — s,ait , /3* + i/u* = ctami - stalf ,

and then

Cjk = (« + iX)c2 + (0 + t»is2 , ct, = (a* + ix*)c1 - (0* + in*)is% ,
(7)

Cjn. = (0 + *'m)c2 + (a + iX)is2 , cmj = (13* + in*)c*? - (a* + iX*)is^ .

To form the matrices *TJ'n and Tn the elements of ukm(z), and *utm(£') should also be
computed. They are given by

71/2 sinz = SiC2 -f- iciS2 , y*u2 sin f = + ic^st ,

y1/2 cos z = CiC2 — iSiS2 , 7*1/2 cos f = c*c* — is*s* .

3. Exceptional cases. The rules of Sec. 2 hold in the general cases when ww* ^ 0.
If ww* = 0, some of them are modified as indicated below. We discuss five exceptional
cases:

I) w* = 0, w ^ 0; II) w = 0 w* 5^ 0; III) w = w* = 0, C2 = C*2 7* 0;IV) w = w* =
C = C* = 0, but n2 + Q2 > 0; V) w = w* = C = C* = n = Q = 0.

Case I. | C* | = R > w > 0, so that a(C*) has a meaning. We take st, cx, s2, c2 as
in (4), but s* = <x(C*)/2i, = 1/2* since 7* = 0. Now B* = 0 and a(B*) is meaningless,
but in this case £ = 0, so that s* = 0 and c* = 1. The elements cik , cim are given by
(7), but

cli = 2"1/2K + aL'AC*)], ci; = 2"1/2K' - aLMC*)],
(8)

eLt = 2"1/2K, + al'AC*)], C = 2"1/2[< - a'kia(C*)],



1955] SOLUTION OF LINEAR EQUATIONS 127

as well as

ycL =L2U2[Gc2 - HsMC*)], yc'tt = 2i/2[gc2 - hs2a(.C*)],

ycL. = 21/2[#c2 - Gs2<r(G'*)], yc'm'm = 21/2[/ic2 - gs2a(C*)].

Case II. This is similar to I: y = 0 and | C | = R > w* > 0.
We take s*, c? , s? , c% as in (4), but Sj = 0, Ci = 1, s2 = and c2 = l/2}. The

expressions of elements cik , cim , ckk , cmm are:

cU = 2',/2[a't - aWQ], c'/k = 2"1/2[a^ + a?ra<r(0],

c'im = 2~1/2[a'„ - a>(0], cV = 2"1/2[<; + a,V(C)],

y*c'kk = 21/2[Gct - tfsV(C)], 7*c„ = 21/2[^C2 - feV(C0],

y*c'mm = 21/2[Hc* - GsMQ], y*cmm = 2l/2[hc2 - gs*MO].

(9)

Case III. Here y = 7* = 0 and C, = c* = 1, Si = st = 0, c2 = c% = 1/2*, while
s2 = o-(C)/2}, s* = <r(C*)/2i. The expressions of diagonal elements ckk , cmm are:

c'kk = M + P + (M - P)a(CC*) - (n + q)a(C) + (n - qMC*),

c'k'k = r + p + (r- p)a(CC*) + (N + QMO - (AT - QMC*),
c'mm = M — P + (M + P)a(CC*) - (n - qMC) + (n + qMC*),

c'Jm = r — p + (V + p)cr(CC*) + (AT - QMC) - (AT + QMC*).
The off-diagonal elements are computed as in (8) and (9).

Case IV. The conditions ckm = 0, cmk = 0 yield one and the same equation, so that we
add the condition f = z. We subdivide this case n2 + Q2 > 0 into: IVa) n ^0 and
IVb) n = 0, but Q 7^ 0.

In the first case IVa):

8* = 5 = P(n2 + p2r1/2; 7* = 7 = (n2 + Py/2/R,

where It = {n + p2 + Q2)*. Formulae (4) hold for cx , c2 , | Sj | and | s2 |, the signs of
Si and s2 being now a(n) and <r(Q) respectively. If Q = 0, then s2 = 0. The off-diagonal
terms in C are computed as in (7), while

cL = M + Affi/n; c« = r + c^m = M — NR/n; <£„ = r — R. (10)
IVb). Now n = 0, Q ^ 0. Interpreting <r(0) as zero, we have S = <r(p) for any p ^ 0,

so that

8? = 81 = {[1 - *(p)]/2},/2, c? = Ci = {[1 + c(p)]/2}1/J,

while ct = c2 = [(1 + | p |/K)/2]J, s% = s2 = <r(Q)[(l — | p \/R)/2]\ The elements of
C are computed as in IVa), replacing in (10) N/n by — q/Q, that is:

c'kk = M — qR/Q; c*'*' = r + R\ c'mm = M + qR/Q; c"„ = r — R.

Case V. In this case the vanishing of n and Q entails also p = M = 0 since w = w* =
C = C* = 0. Thus, ckm = 0 and cmife = 0 reduce to only one equation, namely

P sin 2z — AT cos 2z + iq = 0, (11)
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if we add the condition f = z. This condition f = z presupposes N2 + P2 > 0, since if
N = P = 0, then q cannot vanish because of | amk \2 + | akm |2 = N2 + q2 > 0.

Ya). If w2 = N2 + P2 > 0, then, denoting w2 + q2 by R2, we have: 5 = P/w, y = w/R,
o-(sin 6) = <r(N), o-(sinh^) = — <7(5).'Since 8 = £,-<p = y we have c* = Ci etc., and cx =
[(1 + «)/2]*; Sl = ~ 5)/2]*; c2 = [(1 + 7)/2]}; «2 = - «r(9)[l - 7)/2]*. Now
G — — H = w, g = h = r and thus ckk = R + ir, while cmm = — R + ir.

Vb). If N = P = 0, we take f + z' = 0 that is <p = ij, 8 + £ = 0. The condition
Ckm = cmk = 0 becomes tan 26 = q/r so that <p = 77 is arbitrary. We take = 77 = 0.
Since 5 = r(r2 + g2)_i we have c* = Cj = [(1 + 5)/2]*, s* = Si = <r(q)[ 1 — S)/^]*. The
elements of C are: ckk = cmm = z'(r2 + q2)h] cik = a + tA; c,m = /3 + ck, = a* + tX*
and cm>- = /3* +

4. Convergence. Let us consider two consecutive transformations of A into C with
ckj — cik = 0 and then of C into D with dkm = dmk = 0. Thus, the elements akm , amk ,
aki , ami , aik , aim of A are transformed according to the scheme:

Cjm * djm

Cmj *

dki |2 + | dmi |2 = | c„j |2. Now

dkj ^ 0 ^ dkj , dim ' Ckm ' 0

djk * 0 —» , &mk * Cmk * 0

The relations (2) yield | |2 + | rf,m |2 = |cim \2

I c,m I2 = 7* I CLim COS {•' + akm sin f |2,

| cmj- |2 = 7 I amj- cos z + amk sin z |2.

Using polar forms so that ar, = | ar, \ e'"" etc., we have:

2 | cmi |2 = | ami |2 + | amk |2 + [| amj |2 — | amk |2] cos 26

(12)
+ 2 | amiamk | [7 sin 26 cos (w„,- - umk) + tanh2<p sin (com, - wmk)]

and a similar expression for 2 | cim |2 in which amj , amk, 8 and <p are replaced by aim, akm ,
£ and — -q respectively. Each pair of symmetric elements ar, , a,r , s 5^ r, vanishes and
reappears once in a cycle. When the number of cycles p increases the various values of
8, <p, £, r7, wr, , o;jr related to a fixed pair ar, , a,r can be considered as random values.
Therefore, when p increases the average values of sine and cosine of 28, 2£, cor, — cor, ,
a)r, — Ujr and of tanh 2<p tend to zero. It means that when p is large the two last terms in
(12) and in the corresponding expression 2 | cjm |2 do not contribute to final values of
moduli and these values are to be derived from the approximate expressions

I c,.m I2 - [| aim |2 + | H/2; | cmi |2 - [| ami |2 + | amk |2]/2

which represent the average effect of one cycle, when a large number of cycles is con-
sidered. This gives, for one cycle,

I djk |2 + [ dim |2 + | dki |2 + | dmi |2 = [| aim |2 + | akm |2 + | ami |2 + | amk |2]/2.

Consider now the global effect of a cycle on the average modulus v of all n(n — 1) off-
diagonal elements, where

"2 = (I aa 12)/n(n - 1).
«Vj

Since for each pair of symmetric elements the sum of four moduli squared of elements
of D is approximately equal to half the sum of four moduli squared of elements of A,
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the average modulus v is multiplied (1/2)n(n — 1) times per cycle by the factor [1 —
2/(n — l)n]*.

At each step, indeed, two among n(n — 1) squares of moduli of off-diagonal terms are
lost, the sum of four new ones being equal to the sum of only two old ones on the average.
After the completion of a cycle with its n(n — l)/2 steps, the average modulus v becomes

v[l - 2/(n - l)n]n<"~1)/4 ~ ve~1/2.

Thus, after p cycles the average modulus of off-diagonal terms decreases ev/2 times. The
speed of convergence as characterized by a constant factor of decrease, namely e_i per
cycle, does not depend on the number of cycles. The results of numerical computations
performed with the aid of IBMs new electronic data processing machine type 701 agree
completely with the conclusions of this study of convergence. The type 701 performs
with extreme rapidity: a 32 X 32 matrix is diagonalized in 19 minutes and the numerical
results are printed in four minutes, the total time being 23 minutes. Since the errors do
not accumulate the procedure is very accurate: reconstructing the original matrix from
the diagonal matrix and the Eigenvectors, if the matrix is normal, or from the diagonal
matrix and unitary matrices U and T in the general case, very small differences are
obtained between the elements of the original and the corresponding elements of the
reconstructed matrix. Thus, for instance, in the case of a real symmetric matrix of order
32 x 32 these differences were less than 10'g. Since the elements of the original matrix
were of the order of 10~2 the relative differences were less than 10~7.

5. Special matrices. Our diagonalization method does not preserve the skew symme-
try. A skew symmetric matrix is diagonalized as a general complex matrix, its skew
symmetry being lost from the first step. Since for a skew symmetric matrix akm + amk = 0,
akk = 0 its transformation is characterized by

cki + cik = uaki + vami ; cmi + cim = -v'akj + u'ami , where

u = cos f — 7* cos z and v = y*! sin f' — 7* sin z. If we want the skew symmetry
preserved, we must have uaki + vami = 0 and v'aki — u'ami = 0 for any aki , ami so that
u = v = 0 and this gives 7* = 7, f' = 2. But then f' = z entails together with akk =
amm — 0 the corollary — cmk = ckm = akm and we cannot make vanish in C the elements
cmk , ckm . But the symmetry of a complex matrix as well as the Hermitian and skew
Hermitian character of matrices are preserved. We consider in this paragraph the
symmetric complex, general real, skew Hermitian and Hermitian matrices. In each case
the general procedure is somewhat simplified thanks to special properties of the class
considered.

Symmetric complex matrices. If akm = amk , then Q = g = 0, C = C* = 0, w> = w*.
Therefore f = z' and c? = cx , st = s, , c% = c2, st = — s2 which entails also a* — a,
fi* = /3, X* = X and p.* = /i. Formulae (7) hold and they prove that cik = cki . Formulae
(6) are simplified:

ckk = c« + ic'kk , Cmm "I- ic'Jm , with

cL = 8P + CRM + I)N)/w, c'm'm = -SP + (RM - DN)/w,
ckk = 5p + (Rr + Dn)/w, c'm'm = - <5p + (Rr - Dn)/w.

For real general matrices the numbers n, p, q, r vanish, so that C — C*=<p=r) = 0,
7 = 7* = 1, z = 6, f = I, c2 = c% = 1, s2 = s* = 0, w = w* = R = RiR2 , where



130 E. G. KOGBETLIANTZ [Vol. XIII, No. 2

R\ = M2 + Q2 and R\ = N2 + P2. We have also 5 = cos 29 = (MP - NQ)/R1R2 ;
S* = cos 2£ = (MP + NQ)/R1R2 as well as

Sl = ff(8l)[(l - 5)/2]1/2; c, = «r(c,)[(l + a)/2],/2;

(13)
st = <Kst)[(l - 5*)/2]1/2; cf = <Kct)[(l + 5*)/2]1/2.

The signs in (13) must agree with the relations M sin (6 — £) = Q cos (0 — £) = MQ/Rt ;
P sin (6 + £) = yV cos (8 + £) = NP/R2 and thus, for | MN j ^ | PQ |, the signs are:

For | MN | > |PQ | > 0: „v,,y rJ. ^

For | PQ | > | MN | > 0:

Suppose | MN | = | PQ \ > 0, the singular case MN = PQ = 0 being discussed later.
If | MN | = | PQ | > 0 then both rules (14) hold since this is a limiting case when
| MN | —> | PQ | for | MN | ^ | PQ |. No contradiction can arise between the two rules
(14): o-(st) becomes meaningless, if MN = PQ, because then sin £ = s? vanishes, while
for MN = — PQ, Si = sin 9 vanishes so that <r(s,) is meaningless.

In the singular case MN = PQ = 0 the parameters N and Q cannot vanish simul-
taneously because 2 (N2 + Q2) = a2km + amk > 0, otherwise no transformation is applied
to akm — amk = 0 and this pair is skipped. At least two of four parameters M, N, P, Q
vanish since MN — PQ = 0, but it may also happen that three of them vanish in which
case either N ^ 0, or Q ^ 0. In all we distinguish five subcases:

1) akk = amm , akm + amk = 0, so that N = P = 0, but MQ ^ 0;
2) akk + amm = 0, akm = amk , so that M = Q = 0, but NP ^ 0;
3) akk = amm = 0, akm ± amk ^ 0, so that M = P = 0, but NQ ^ 0;
4) akk - amm = 0, akm + amk = 0, so that M = P = N = 0,- Q ^ 0;
5) akk - amm - 0, akm — amk = 0, so that M=P = Q = 0, N^0.

In all these five cases st = 0 and c* = 1, while the values of s, = sin 8 and c, = cos 9
are found to be:

Case: 1) 2) 3) 4) 5)

s, = Q/Ri N/R2 <r(Q) r(Q) r(N)

Ci = M/Rl P/R2 0 0 0

The elements of C are computed using the following expressions:

c,i = Ciffl.t + , c,„ = —slaik + c,a,„ ,

Ckj ^ l&ki "1" ® f Cmi S idkj C*CEm,- ,

ckk = (M2 + Q2fn + (N2 + P2)1'2, cmm = (M2 + Q2)l/2 - (N2 + P2)W2.
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If a real matrix is symmetric, then the procedure is simplified further and for a

real symmetric matrix we have 8 = P(N~ + P2) ^ so that

c? = c, = [(I + S)/2],/2; sf = s, = <j(N)[(1 - 8)/2],/2.

The elements of C are as follows:

cH = M + (A'2 + py/2, cmm = M - (X2 + py\

Cjk CiQjk ®i®j« j Sian. -|- Ciajm .

The diagonalization yields the characteristic roots and vectors of the original matrix
since ;/'(£) = u'(0) = ["(0)]"'.

Skew Hcrmitian matrices. The skew symmetry of a Hermitian matrix is preserved.
In this case .1/ = P = Ar = q = 0 and akt = i(r + p), amm = i(r — p), akm = Q + in
and a,„k = — Q + in, with Q~ + n~ > 0. Here we find H = G = 0 so that ckk and cmm
are purely imaginary. We take f = z since the vanishing of ckm entails also cmt = 0. It is
easy to verify that a* + a = 0, /3* + /3 = 0, X* = X, /u* = M so that cki + cik = 0 and
Cmi + cim = 0. This completes the proof that the skew symmetry is preserved. Since
f = 2 we have *u(£') = u~\z) so that our procedure yields the characteristic roots and
vectors of skew symmetric Hermitian matrices. It proceeds as usual in the case of a
complex matrix, a half only of off-diagonal elements being computed because of the
skew symmetry, while the diagonal elements are: ckk = i(r + R) and cmm = i(r — R)
with R = (n2 + p2 + Q2)K

Hermitian matrics. Now amk = a'km and akk , amm are real. Therefore, m = n = p —
Q = 0 and f = z since the vanishing of ckm entails that of cmk — c'km , the character of
a Hermitian matrix being preserved. We have, indeed, in this case a* = a, /3* = /3,
X* + X = 0, + ju = 0 so that ckj = c'k and cmi = c'm . On the other hand, g = h = 0
and c.kk, cmm are real. Denoting (N~ + P")^ and (N2 + P2 + q2)i by w and R respectively,
it is found that 8 = P/w and y = w/R which gives c* = c, , s* = sx, c* = c2 and s* = s2
in their usual form with <r(.s,) = a(N) and o-(s2) = — a(q), while Ci > 0, c2 > 0. These
results hold in the general case, when N ^ 0. When q = 0, we have s2 = 0 so that <r(q)
is not needed. The elements of C are computed by (7), while the diagonal elements are
simply ckk = M + R, c,„m = M - R.

In the case when .¥ = 0, we have g ^ 0 because | akm |2 = | amk |2 = N2 + q cannot
vanish. The numbers c* = c2 and s* = s2 are given by the formulas s2 = — cr(^)[(1 —
| P \/R)2}\ c2 = [(1 + | P \/R)/2]h for P ^ 0, while = s, = [1 - «r(P)]/2 and c? =
Ci = [1 + a(P)}/2 with <t(0) = 0, as usual. The diagonal elements are again chk = M + R,
cmm = M — R where R = (p~ + g2)} since N = 0. The off-diagonal elements are com-
puted as in (7) in which this time, if P ^ 0

2 (a + i\) — ajk + aim + (ajk — ajm)a(P),

(P* 0)
2(0 + in) = —aik -)- a,m + (a,t + aim)a(P).

For P = 0 we have (a + i\)2i = a,k + aim and (/3 + = dim ~ o,ik .
6. It is interesting to observe that the diagonalization of the most general complex

matrix G yields the upper and lower bounds for the absolute values | X, | of its characteris-
tic roots.



132 E. G. KOGBETLIANTZ [Vol. XIII, No. 2

A known theorem (H. Weyl, Proc. Natl. Acad. Sci. U.S. 1949, pp. 408-411) states
that the common characteristic roots a? of two matrices G*'G and GG*', a{ ^ a\ ^
«3 ^ ^ ^ 0 are related to those Xi , Xa , • • • X„ of (?, | Xi | St | Xa | <= I X3 | «£
■ • • ^ | X„ |, by an equality JJ? | X,- | = JJ? a, and by n — 1 inequalities XI7 | X,- | g
11™ a,- (m = n — 1, n — 2, • • • 3, 2, 1), where a,- denotes the positive square root (a?)*.

Therefore, ax and an are the bounds for the moduli of X,- :

«i ^ I Xx | £ ■ • • | X. | .
On the other hand it is easy to prove that the moduli of elements kj (these elements

are complex numbers in general) of the diagonal matrix K into which our diagonalization
transforms G are precisely equal to a, : | &,• | = a, .

Thus, although the diagonalization in general does not yield the characteristic roots
X( of G, it gives the upper and lower bounds for their moduli: | | ^ | \l | g | X„ | ^ | fc„ |.

All the proofs were omitted for the sake of brevity and also because of their elementary
character.


