
310 NOTES [Vol. XIII, No. 3

have studied the oscillations in an electric circuit containing iron, where the nonlinearity
is essentially of the seventh degree. The damping is reduced by an electronic device, so
it has been possible to obtain all subharmonics from the second to the ninth order. For
small values of t a good agreement with this theory is obtained. The band character and
the existence of an upper limit for k has been clearly demonstrated. The subharmonic
state was excited by a voltage pulse of the same magnitude as b.
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Fig. 5. Experimental curves (dotted) according to K. Goransson and L. Hansson and theoretical values

from Eq. (13).

ON THE STABILITY OF THE AXIALLY SYMMETRIC LAMINAR JET*
By H. G. LEW (The Pennsylvania State University)

1. The stability of the axially symmetric laminar jet will be investigated herein
subject to rotationally symmetric disturbances. We suppose the laminar jet to be issuing
from a small hole with the motion symmetrical about the z axis which is aligned with
the jet. The angular position of any point is given by the angle <p measured from the
positive z-axis, and r the perpendicular distance from the axis. Thus a set of cylindrical
polar coordinates is used.

The steady state flow can be solved in closed form and is given in Goldstein [Ref. 1].

'Received July 13, 1954. This work was carried out under Office of Naval Research Contract Nonr
656(01). The author acknowledges with thanks the checking of Equations (5) by J. A. Fox.
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The distribution of the velocity in the direction of the jet axis is

ry _ 5 M. i    q\
W ~ 8x^(1 H-if2)2' W

where M is the rate of momentum flowing across a section of the jet and is a constant,
and £ is defined by

= ifsMY'2?:.
4c V irp / 2

If we select characteristic length and velocity as

w =?.Mi
0 8 ir/z 2

respectively, then the velocity W from (1) becomes:

W 1
Wo [1 + b(r/L)2]2 (3)

where b = 3/64?r.
We consider now the stability of the axially symmetric jet with regard to small

rotationally symmetric disturbances of the exponential type. The disturbances are
considered small compared with steady-state flow and all non-linear terms of the dis-
turbances are neglected. Moreover, the steady-state flow is to be of the boundary layer
type. Thus, we have for the velocities and pressure

w* = W(r) + w(r) exp [ia(z — ct)],

u* = w(r)"exp [ia(z — c<)l, ...
(4)

v* = v{r) exp [ia{z — ct)],

TP* = P + p(f) exp [ia(z — ct)],

where W, P are the steady-state quantities, the others are the disturbances, and a (real)
the wave number, and c = cr + ic{ with cr the wave velocity and c,- the damping or
amplification factor. If Eqs. (4) are inserted into the equations of motion [Ref. 1], neglect-
ing non-linear terms of the disturbances, and also assuming that the steady state flow
is of the boundary layer type, we obtain the following disturbance equations:

uia{W — c) = — - p' + v\u" + ~u' — ua — "),p \ r r /

ia(W - c)v = v(v" + ~rv' - va* - jjs),

(a)

(b)

ia(JV — c)w + uW' = — -pia + v(w" + ^ wa j, (c)

(ru)' + wria = 0, (d)

(5)
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where the primes denote differentiations with respect to r. The boundary conditions
are that the disturbances u, v, w, and p are bounded and that they vanish at infinity.
Moreover, all integrals over (0, °°) are to be convergent.

It is noted that Eq. (5b) is uncoupled from the other equations (5a,c,d). Thus, all
discussion of stability with regard to the v-component may be obtained from Equation
(5b). The steady-state flow may be shown to be stable to the ^-disturbance component
in the following way. Following Synge [Ref. 2], we multiply Eq. (5b) by (rv) (the bar
denotes the complex conjugate) and integrate over the interval (0, oo). Thus we obtain:

ia J (W — c)-vvr dr = v J ^v"vr + mi' — rvva — dr. (6)

If we integrate the first term of Eq. (6) by parts, assert the boundary condition
u(-f oo) = 0, and separate real and imaginary parts, we obtain

cr -
f«/o

Wrvv dr

fJo
rvv-dr

and

c> v r T •-> - 2 , vv~] ,— - J yv v + vva + —J dr,

assuming that v vanishes at least by r~l/2 at infinity. Thus c{ is always negative and
therefore the jet is stable to the v disturbance. Hence, in this case of rotationally sym-
metric disturbances, it is sufficient to investigate the case of axially symmetric dis-
turbances.

2. We consider the inviscid case now for the u, w and p components. Setting v = 0
in Eqs. (5a) and (5c), eliminating the p term by the usual differentiation and subtraction
processes, and utilizing the continuity Eq. (5d), we obtain one equation for the u com-
ponent

(W - c)[m" - au + - u(w" - = 0. (7)

We may non-dimensionalize Eq. (7) by using the characteristic length and velocity
given by Eq. (2); for example, the non-dimensional disturbance velocity and coordinate
r are ii/W0 , r/L, etc. The resulting equation has the same form as that of Eq. (7), and
hereafter, we note that Eq. (7) and all subsequent equations in this section, have been
non-dimensionalized and no new equations will be introduced. Here we note the values
of the steady state velocity and its derivatives for future use. They are:

W" -

w I (i + bry'

W 24 bV
(8)

r (1 + br )*

We can show that for the axially symmetric jet given by Eqs. (8) there exist no
self-excited disturbances and no damped disturbances when viscosity is neglected. The
proof is as follows:
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Consider a transformation for w(r) of the form:

u(r) = r'l/2g(r). (9)

Insertion of Eq. (9) in the disturbance Eq. (7) leads to

„ , f 3 2\ W" - r~lW'{r)
g + \ 4? ~ a )9 "" W - c 3 =

Let

L[g] = g" ~ (I5 + °^)g'
fM _ W" - r-'W'(r)
R) W - c

(ID

then Eq. (10) can be written as:

L[g(r)] + -f(f)-g(r) = 0. (12)
We assume a non-neutral oscillation so that there is a solution g with c not real. We
multiply Eq. (12) by the complex conjugate g and integrate over (0, °°) and subtract
its conjugate. Thus

[ {gL[g] - gL[g]} dr + f gg(f - 7) dr = 0 (13)
Jo Jo

and since

[gL[g] - gL[g}\ dr = 0, (14)I
then

r" - r°° W" — r~1W'(r)
Jo gg(f - f) dr = —2 iCi gg —dr = 0. (15)

However, since Eq. (8) shows that (W" — W'/r) is always positive in (0, =°), Eq. (15)
is satisfied only if c( = 0. Hence there are no self-excited or damped disturbances if
viscosity is neglected, and therefore only neutral disturbances need be considered. This
result is interesting since any section taken of the jet containing the jet axis leads to a
velocity distribution with two inflection points for which non-neutral oscillation may
occur if that profile is a two-dimensional one. Of course, here we do not have a true
inflection point in that sense since the flow is three dimensional, and rotational symmetric
disturbances are considered only.

We shall consider now the case of the neutral mode. Suppose there is a point r0 such
that \W"(r0) — W'{ra)/ra] = 0 in the interval (0, °°), then r0 is either 0 or ® by Eq. (8).
At r0 = 0 and <» we have, respectively,

W(0) = 1 and W{») = 0.
Now consider the differential equation

g" + ^g + Kg = 0, (16)
where

_ W"(r) - r~xW'(r)
4r~ W(r) - W(r0)
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and
W(r0) =0 or 1.

Equation (16) is equivalent to a variational problem for the first eigenvalue of

f°°(g'2 - Kg*) dr
X = min —    (17)

/ t*Jo

We must show that the ratio in Eq. (17) is negative for some function g satisfying the
boundary condition. Then X < 0 and the minimum will then be below this value. For
the case of W (r0) = 0, K will always be negative and therefore all characteristic numbers
X are positive and no neutral oscillation occurs. In the case of W(r0) = 1 at r0 = 0,
K may be positive, and there may exist a function such that the ratio in Eq. (17) is
negative. Numerical calculations for this case are given in [Ref. 3].

It is interesting to note that the term

r \ r / dr \r dr /

is the gradient of — i\/r = r~lW'(f) where y is the vorticity of the basic flow in accordance
with the parallel flow assumption. Thus, the condition for neutral oscillation corresponds
to the vanishing of this gradient at some point. This is somewhat analogous to the two-
dimensional case discussed by Lin in [Ref. 4] where a physical interpretation of this
condition for stability is given. However, here the important quantity is i\/r and not the
vorticity alone.

The extension of these discussions to three-dimensional disturbances should allow
for the dependency of the disturbances on the angular variable <p.
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ON SOURCE AND VORTEX OF FLUCTUATING STRENGTH
TRAVELLING BENEATH A FREE SURFACE*

By H. S. TAN (University of Notre Dame)

In the coordinate system which moves with the travelling source or vortex at constant
forward speed c, and under the hypothesis that the resulting fluid motion is irrotational,
one can define a disturbance velocity potential 4>(.r, y, t) for the two dimensional fluid
motion through the differential equation

*Received Oct. 18, 1954. Revised manuscript received Feb. 4, 1955.


