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ON THE FLEXURAL VIBRATIONS OF CIRCULAR AND ELLIPTICAL PLATES*

BY
WILLIE RUSSELL CALLAHAN*
General Electric Advanced Electronics Center at Cornell University

In this paper we express R. D. Mindlin’s version of plate flexure equations, which
take transverse shear and rotary inertia into account, in general orthogonal curvilinear
coordinates and then we specialize these to polar and elliptical coordinates in order to
find the frequency equations for the normal modes of vibration of the circular and
elliptical plates respectively. In particular, we wish to discover those of the eight natural
boundary conditions for which the normal modes of vibration are expressible in terms
of product functions.

In rectangular coordinates, the bending moments (M, , M,), twisting moments

M,, = — M.,,) and shear (Q. , Q,) are given by the equations:
o, = p(% - w2h), w, = p(% a2
My = —M, = L5 % p(%e 4 %) @
@ = k(2 +v) o =ra(2+u),

where ¢, , ¥, , and w are plate displacements; D, @, and p are the plate modulus, shear
and Poisson’s ratio respectively; h is the plate thickness, and k* = #°/12 is a constant
“for any plate.
In the case of free vibrations, Mindlin has shown that w, ¢, , and ¢, can be expressed
in terms of the three functions w, , w, , and w; by the following equations:

w=w + w,,

9w,

IR kR OE R (b)
b= -3 +(«z—)‘§‘;’—%,

where w, and w, are components of the displacement perpendicular to the middle plane
of the plate, and w; is the potential function which gives rise to the twist about the
normal to the plane of the plate;

o= (S 4+ R8)™', o= 88"+ R&),
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2
where R = ’;—2 (coefficient of rotary inertia),

D .
S = Pah (coefficient of transverse shear),

2
o = Pll’)h where p and p are the plate density and angular frequency respectively;

= 35{R + 8) + [(R — 8)" + 451"},
and
= 35%{(R + 8) — [(R — 8" + 45°1"*}.

Mindlin showed further that the w; are governed by the following three separated
wave equations

(V2 + &Hw, = 0, 1=1,2,3, (o)
where
2 4 — —1
Vsaz'l':y ad = HE =S

The functions w; are also linked through the following boundary conditions: One
member of each of the following three products must be specified on the boundary:

‘PEMG ’ 'P,Mg., ) wQE ’
where

w=w +w,, Y = ¥, cos 0 + ¢, sin 6, ¥, = ¢, cos § — ¢, sin 6,
Q =Q.cos0+Q,sind, M,="M, cos’ 6§+ M,sin’ § + 2M,,sin 8 cos 9, (d)
M, = (M, — M,)sin 6 cos 6 + M, (cos’ § — sin® 6),

0 being the angle between the normal to the boundary and the z-axis.

The classical Lagrange theory of plates is a good approximation only when the
wave length is large in comparison with the thickness of the plate, and this restricts
the theory generally to low frequency vibrations. The present theory permits extensions
to moderately high frequency modes, essentially because it includes coupling between
flexual and shear motions.

Transforming equations (a), (b), and (¢) into general orthogonal curvilinear co-
ordinates we have:

w=w + w,,

Ve = (o4 l)hl au)l =+ (o l)hl + hz aws )

w (Ul - l)hz awl + (0’3 l)hz awz hl 661:3 )
Q szh[dlhl 'E + ozh, au;z + h, awa]’
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M = (e - o T i T4 P, ) 2D 4+ Pt ) 22}
+ (o2 — 1){hf "a’i” + uh} ‘3,“,” + Pi(a, a"”} @)

1 2], 92 9y (dy az 9y ay az\| (oz dy 8w,
a “)[h‘h’{4 3t am (ag) + (as an T ot an)[<as) (az) ]} 3 97
+ le(x: y) + R2v(x) y) ])
= — _ 432) , 92 3y (9y 9z dy , dy az})| (9z 2
=@ —-wD I:(“ 1)("""{4 3 o (as) + (az an T ot an)[(as)
_ (3w |\ 9w 8w1)
(an) ]} 3 oy T Bula, y) + Rz, 9)
_ (nepely 223y (), (%= 3y a_ya_x)[(a_x ' (a_y)]} 3w,
+ (o l)(h‘h’{4 3t an (ag) + (ag an T 3t a9 as) an/ 1f & on
+ Rz, 9) % + R, (z, v) ?—;)

9*
(h% a;"s h:"f,“é“ + 862, 1) 52 + Suls, ) a"’)]
8w,
hz s

afz + h: a 2 + LIE(x) y) + L2n(zy y)

=0, 1=1,2,3, (B)
where:

(1) = z?_”( ) _xi _x]
L‘,(_x.y)-[hlaa 'a, +h” ;2

7 an/ Jon \"™ o
+ 2[5 + (]2 () ©
s = (502 - 2205
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Sulw,9) = h‘{ae [(as) + 3(329 ] % (h2 ) + 3—2’ [(3?) (a_y) ] ; (h %u)}
-l )+ o] o) - 06 - (] (),

2
’1-2 (g:;) +(g_g)’ t = 1lwhenj =¢fand? = 2whenj = .

Specializing equations (4) and (B) into polar and elliptical coordinates we have: for
polar coordinates b, = 1, h, = 1/r

w=wl+w2, 'Pr:(al_ awl‘l‘(O’z )aw2 :‘96—1’;2’
—_ -1 au)l — 1 awg _ Q’]ﬂ
= + T T
= k2 ow, ow, , 1 aw,] (D)
Qr = k Gh[ -l- 2 + ; ao

_ _ w, uawl B O'w, _ ’w, pOow, , u Ow,
M, = D{(O'x 1 [ + + 2 802 :| + (0'2 1)[ ar + +1‘ 00’]
1 aw, 1 ow;
+a- ”)[r oo T 1 ao]}

= lazwl - l_&w,] [l ___azw, — }_%]
M, =1 P)D{(Ul 1 [T ar 90 Y + (0'2 1) r or 90 r 90

w,  1ow, , 13w, | o _ .
e +1‘ ar Y + sw; =0, 1 =1,2,3. (E)
For elliptical coordinates
h2 — h2 — 1 _ 2
P77 C%(cosh® £ — cos®n)  C*(cosh 28 — cos 2n) ’
w=w + w,, Ve = hx[(o’l - 1) == 311)1 + (o — 1) 2 awz a’w3]

b = h.[(al -8 @G- ‘f;;]

dw, | 9
Q: = K’Ghh, I:a, % T a“; + w“]
: OB Oy _ ino?
M, = th[(al - 1){'3"’ a;‘:’ ha- #)[ inh 2¢ 2+ — sin 2 %]}

9*w, 0w, Czh2 ow, dw,
+ (o2 — 1){6£2 + u 62 -—q _#)l:mhz EY: — sin 29 a;]} (F)

2
O
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2,
M, =152 th{(al - 1)[2 o — C’h’(sm 2n 3¢ + sinh 2¢ a"")]
o225 — ofn 2 4 )|
+ (o, 1)[2 3 97 C h,(sm 27 T + sinh 2¢ 3
_ Qzﬂa 3’ ws 2 awS)]}
I:{_’E2 C’h(mh2£6£ — sin 29 3
6? " Mn + 2K}(cosh 2t — cos2mw; = 0, i=1,2,3, G

where 2k; = 68,C, C is the semi-focal length of the elliptical plate.
We will now find the frequency equations for the normal modes of vibrations of the
circular and elliptical plates which satisfy the following eight boundary conditions:

CIRCULAR PLATE ELLIPTICAL PLATE

1D ¢,=¢Y=w=0 (clamped plate) Yvi=y¢,=w=0

@ ¥.=¥=Q=0 V=¥, =Q: =0

@ ¥.=M,=w=0 Yi=My,=w=0

@ ¥v=M,=Q =0 Ve=My=0Q: =0 (H
GYM,=M,=Q,=0 (free plate) Mi,=M,=Q, =0

@G M,=M,=w=0 Mi=M,=w=0

MM =y¢=Q=0 Mi=v,=Q=0
®M=y=w=0 Mi=vy,=w=0

when r = r, and § = §, respectively.
It should be remarked that the boundary conditions that we are assuming are
particular and that other values could be assumed for the quantities involved if desired.
By assuming that the solutions of equations (E) and (G) are expressible as product
solutions we obtain the following respective pairs of ordinary differential equations:

d’w‘_(r) + 1 dw,(r) + (53 — :—'5)’");(’) =0

dr’ r dr
2 )
‘%ﬁi) + mw(d) =0 (=123
& v <") + (a — 2¢; cos 2n)wi(n) = 0
2 , ®)
o0 (020 cohWw® =0 (=123

where ¢; = k} and a and m” are separation constants. The first of equations (I) is Bessel’s
equation. The first of equations (J) is Mathieu’s equation and the second is Mathieu’s
modified equation. The solutions of (I) and (J) are of the respective forms:
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sin mé
wi(r) = Jm(ai ) 7‘), w.(O) = 1= ly 2, 3: (K)
cos mo
Ce,,.(E, q-’)y a = Qam cem("; qi)) a = Qan
w‘(f) = ) w-’(ﬂ) = ] (L)
Se,,.(f, Q¢), b= bn sem(ﬂy q-‘)’ b = bn
1=1,2,3

where a,, and b,, are characteristic numbers of the Mathieu functions.

Hence the solutions of (E) and (G) are products of the solutions in (K) and (L)
respectively.

We shall assume the following solutions for (E) and (G) throughout in the solution
of our two problems:

wsﬂn(r; 0) = Afn‘)Jﬁl(ai ’T) cos mo’ i = 17 27

. M)
w™(r, 0 = A J.(8; ,7) sin mé, 1 =3,
w™(, 1) = Cy’Cesniilt, ¢)Ceomn(n, €5, (@ = an = G2n.1),
wi™E, 1) = C’Cermnlf, ¢) 2 A3i(g) cos @r + Dy fori=1,2,
r=0
()

w:m)(fy 7 = C;‘)Sezuﬂ(g: g:)s€znsi(n, ¢3), (b = ba = bans1),
W, ) = O Semnlt, ) X BN (g) sin @r + Dn fori = 3.
r=0
By substituting the assumed solutions (M) in the equations (D), making use of the

boundary conditions (H), we obtain, after some reductions, the following results for the
circular plate:

ProBLEM 1:¢, = ¢, = w = 0 for r = r, (clamped plated).
AT (8 ,To) + A,(.?)J..(B, yT) +0 =0,

AP (o = DI 1) + AL(0, — DILG, 1) + AD T8 1) = 0, W
0o

ALy = D 2T 1) + AP0 = D) 2 Ta(6, ,70) + AL TL(bs 1) = 0.
0 o
PROBLEM 2:¢, = ¢ = Q, = Oforr = r,.

AD(0y = DI, 1) + AD(s = DILG: 1) + AD T T8, 1) = 0,
AP = D BT, + ARG = D BTG, ) + ADTL ) =0, (@)
[} 1]

AL, T8y , 1)) + AL 0o T8, 7o) + AD ? J (83 ,70) = 0.
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ProBLEM 3:y, = M,; = w = O0forr = r,.

A::)Jm(al ;"'o) + Ar(nz)‘]m(62 ,7'0) +0=0,

A(z)((f - 1)J’(61 ,ro) + A(Z)(O'l - l)J'(&, ,7'0) + A(S) m (83 ,To) = 0

3)
Av(nl)(o'l - l)[m J (81 ,70) — Zni I n(8: ;7'0)]
To To
+ Ar(:)( 02 )I: J (82, 10) — 2 Jm(az ’ ro):l
-+ Am 1 I:J’n'.(aa ,To) - —J (53 ,7'0) + 2 J (53 ,7'0)]
ProBLEM 4:¢y, = M, = Q,, = 0forr = r,.
A(I)UIJ (51 )TO) + A(z)o'zJ (62 y"o) + A(z) o m(aa :"'o) = 0
Am(”x — DJ (8 ,70) + Am(“z — DJn(5, 7o) + A»(:) :ﬁ I (85 yTo) = 0,
0
A'(nl)(a' )[ ‘I"n(al ) To) u(al ) TO)] (4)
+ Am(“z - 1)[ Jn(8z ,70) — 2 Jm(52 ,ro)]
A(3)
+ - I:J"(as ,To) — = J (8 ,7'0) + 2 Jm(83 ) "'o):'
ProBLEM 5: M, = M,; = Q, = 0 for r = r, (free plate).
AmﬁJ (8 :To) + Am'fzJ (52 ,"'o) +0= 0
AL(oy — 1)[,% GRS FROS n,)]
+ A-(uz)(ﬂ'z - l)l:m J (82 ,70) — ’”;: J m(82 ;7'0)]
To To
A(S)
+ == [J'n'.(az yTo) — = Jn(sa ) To) + z Jm(53 ;7'0)] (5)

2
AR — 1)[J;:(al SOR-PACI O S AC ,ro)]
+ A(z)(ﬂ'z - 1)[;]”(62 ,ro) + J (62 ’ rO) r m(62" To):|

+ Am(l - )[ Jn(8s ,10) — 2 Jq(‘sa ,To):l =0
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ProBLEM 6: M, = M,;, = w =0forr =1, .

Av(nl)Jm(al yTo) + A,(,,”J,,.(Bz yTo) +0 =0,

AL (0, — 1)[3’0—‘ T8y ,10) — %Jm(éi ,ro)]

+ AP(o, — 1)[:':’ T8y y70) = 73 Tl ”")]

3 2
+ %m_‘ Ja(83 ,10) — :_0 Jh(8; y10) + %,nz‘ I (83 ,ro):l =0,
m I um? (6)
An'(oy — 1)[J'n'-(51 yTo) + ;; J (81 ,70) — r I n(8: ;To)]
2
+ A,(:)(G’z - 1)[J'»'-(52 ) To) + ;io In(82 ,T0) — E‘;%—L' I 8 7"'0)]
+ A-(:)(l - #)[m Jn(83 ,70) — mz J (83 ,To)] = 0.
To To
ProBLEM 7:M, =y, =Q, =0forr =1r,y.
AL Tu(81 1) + AL 0aT (8, 10) + An a8 ,10) = 0,
o "
) m (2) m (3)
An'(or — l);o‘Jm(al yTo) + An' (o2 — l)EJm(az 1 7o) + A Jn(8; ,70) =0,
2
AL(o - 1>[J'4<a‘ 70 + & T ) = B TG ,ro)] @)
2
+ AP (s - 1)[J'4(az 7o) + B TiG ) — B TG, ,r.)]
+ A-(:)(l - I-l)l:m Jn(83 ,70) — ”—: I n(8s ;7'0)] = 0.
To To
ProBLEM 8: M, =y, =w =0forr =1,.
A,‘,.”J...(& ,ro) + A,(,.z)Jm(az ) 7'0) + 0 = 0,
A.(un(a'x - 1) :—"sz(al :7'0) + A-(uz)(o'z - 1) :—"l Jm(32 ;7'0) + A'(:)Jv’n(63 ) ro) = 0,
0 ()
2
AR — 1>[J'.;<sl SORSR IR AT m] ®

2

”:'zz J (82 ) 7'0)]
()

+ A,(,.Z)(O'l - 1)[(]7.(52 ,ro) + 1"‘—0 J,',,(31 ,ro) bl

A2 = 0[P 1) = T, | = 0.
o To

By eliminating the constants from equations (1)-(8) we obtain the frequency equa-
tions for each of the problems.
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By substituting the assumed solution (N) into equations (F), making use of the
boundary conditions (H) and simplifying we obtain the following results for the elliptical
plate:

ProBLEM I:y; = ¢, = w = 0 for £ = £, (clamped plate).
ANCesniilto , @) + APCesnilbo , g2) + 0 = 0,
A (er — DCelnnlto 0) + 4:7(02 — D)Celniilo , 02)
+ A2 + DSesnnilto , ¢) =0 M
AP (o = D@ + 1)Cesniilto » @) + AP(0: — D@ + 1)Cesnilto , @)
+ AV Selnléo, g) = 0
for every value of r.
ProBrEM II:y; = ¢, = Q, = Ofor & = & .
AP(oy — DCehpnrlo , @) + AP (02 — 1)Celislbo , ¢2) + A Sesnnslbo , ) = 0,
A(or — DCesnnilbo , @) + AP (02 — 1Cesuibo , ¢2) (In
+ 4:7@r + DSesnilo , ¢:) = 0,

Afl)o'lceéun(go ) 91) + Aiz)ﬂzceénn(fo ) 42) + Afs)(Zr + l)sez»+x(£o ) q:;) = 0.

for every value of r.

By eliminating the constants in (I) and (II) we obtain the frequency equations for
problems I and II respectively.

_ProBLEM III:y; = M,, = w=0forf =¢§.
APCepnilbo , 01) + A:PCesninlbo , @) +0 =0,
AP (0r — DCelnnléo , 1)) + AP (02 — DCelusilto y G2)
+ A°(@2r + DSesnnio , ¢) = 0,
AP (o1 — D{=2@2r + DICefnsrlto , 1) — G Cesnnlfo , ¢:)]sin (2r + 1),
+ 2FCelaii(fo , qu) cos (2r + 1),

+ AP0, — D{—22r + 1)Céelnsilto , ¢&2) — G Ceznir(&o , ¢2)] sin 2r + 1),
(111)
+ 2Fce£n+l(£0 H q2) cos (21‘ + l)v}

- Ai”{[Se;,’.“(& , @) + @2r + 1)2se2n+l(£0 ) @) — 2G8esn1(bo » @) sin (2r + 1),
— 2(2r + DFSessilbo , g) cos (2r + 1),} = 0,

where
212 27 2
F=-— Czh' sin2y7, @G= C2h’ sinh 2¢,,, and
h2 = h2 = 1 . 2 .
! 7 C%cosh®t — cos® )  C*(cosh 2¢ — cos 2n)
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But since the above equations must be independent of n we cannot solve this problem.
It is found that the same thing is true for the remaining five problems of the elliptical
plate.

We can thus sum up our conclusions as follows:

Conclusion I: The problem of finding the frequency equations for the normal modes
of vibration for a circular plate under the boundary conditions (H) can be solved in
closed form and expressed in terms of Bessel functions by assuming product solutions
for Mindlin’s equations (E).

Conclusion II: The problem of finding the frequency equations for the normal modes
of vibration of the elliptical plate, under the boundary conditions (H) can be solved
in closed form and expressed in terms of Mathieu functions by assuming product solu-
tions for Mindlin’s equations (G), ONLY in the cases when the boundary conditions
(H) are independent of the bending and twisting moments M, and M., respectively.
Thus, the normal modes for the important case of the free elliptical edge do not appear
to be expressible as product functions in elliptical coordinates.



