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-NOTES-
UNSTEADY VISCOUS FLOW IN THE VICINITY OF A STAGNATION POINT*

By NICHOLAS ROTT (Cornell University)

Consider a steady two-dimensional "stagnation point" flow of a viscous incompressible
fluid in the upper x, ?/-plane; let the flow be directed towards and limited by a plate in
the plane y — 0, with the stagnation point at x = y = 0. The corresponding flow pattern
is well known as an exact solution of the Navier-Stokes equations.

Now, in addition, let the plate perform a harmonic motion in its own plane, i.e.,
in the x direction, while the flow at y —» <» remains steady. It seems to have remained
unnoticed that even in this case, the exact Navier-Stokes equations yield a soluble
problem of the boundary-layer type. Using for the velocity components u and v in the
x- and y-directions respectively,

u = axf'(v) + be<u'g(ii), (1)

» = ~(avy/2f(v), (2)

and for the pressure, p,

where

p = — | oV — pvaFirf) + p0 , (3)

, - S/(f)'". (4)
(v = kinematic viscosity), and introducing these expressions in the Navier-Stokes
equations, the following set of equations is easily obtained:

r - ff = i + (5)
ikg + gf - fg' = g", (6)

ff = F' — (7)
where k = wfa is a "reduced" frequency. Equation (6) and Eq. (7) result from the
equation of motion in the x-direction, by putting the terms proportional to x and in-
dependent of x respectively equal to zero. It is seen that Eq. (5) for the steady part is
independent of the superimposed "j-flow." With the boundary conditions, /(0) =
/'(0) = 0 and /'(<») = 1, Eq. (5) has the well-known Hiemenz solution. The viscous
pressure term F can also be computed independently of Eq. (6).

Since the function /(77) is known, Eq. (6) can be solved for g with the boundary
conditions g(0) = 1, g(°°) = 0. Consider first the steady motion of the plate with con-
stant velocity b, i.e., 03 = k = 0. The corresponding solution g0, say, fulfills the equation,

g'«' + fg'o - f'g0 = 0. (8)
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The exact solution is

<7° = = -811/" (9)

or, the velocity profile is proportional to the shear distribution of the Hiemenz flow
(see Fig. 1). Solution (9) obviously fulfills the boundary conditions since /"(°°) = 0,

o i a "i
Fig. 1. Steady and quasi-steady velocity profiles.

and also the differential equation (8), because upon differentiating Eq. (5), the result is

+ ff" - f'f" = 0.
With /"'(0) = — 1, the shearing stress at the wall, tw , is proportional to

so that the resulting tw from both the /- and the j-flow becomes

T W = pM1/2{ax/"(0) - (11)

Note that for a; = b/a, the velocity outside the boundary layer is zero relative to the
wall; the shearing stress at the wall, however, is zero at x = .658b/a. Evidently rw = 0
does not necessarily mean separation for moving walls; in a system where the wall is at
rest, the flow is not steady. The resulting boundary layer profiles are sketched in Fig.
2. Such development may be expected at the stagnation point of a Flettner rotor.

Fig. 2. Boundary layer development in the vicinity of a stagnation point with the wall moving at
constant velocity b.
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In the oscillating case, the two limiting cases, k « 1 and k » 1 will be considered.
For k <<C 1, put

g = g0 + ikgx + (ik)2g2 + • • • . (12)

Equating powers of ik, the solution for g„ is given by Eq. (9), obtained above; £/, fulfills
the equation

g'' + fgi - f'g, = g0 = -811/" (13)
with the boundary conditions gfi(O) = <7>(°°) = 0. One particular solution of the in-
homogeneous equation (13) can be immediately given: gl = .811/. This function, how-
ever, does not fulfill the conditions at infinity, as /(°°) —> n- The complete solution of
Eq. (13) is obtained by adding the general homogeneous solution:

9i = nk + cj" lo f7ridv + c*f"' (14)
where

E = exp f dr^J. (15)

From g,(0) = 0, it follows that c2 = 0. The constant cx has to be adjusted so
that g^( oo) = 0. Its value can be found with the help of the identity

J? fV JV/2
/ = f" I jmdv Jo dv (16)

which may be proved by identifying the proper inhomogeneous solution of Eq. (13)
with /, or directly by using the properties of the function / as a solution of Eq. (5). It
can be shown also that for f"2/E —> 0, and that the integrand of the inner integral
in Eq. (16) is integrable between the limits 0 and <=. Therefore, for large t/, the inner
integral in Eq. (16) will vary only slightly and may be replaced asymptotically by the
constant value obtained after taking the limits between 0 and °° :

dvjf" f f^dv■ (16a)
With this asymptotic expression, c, can be determined, and the final result is given by

91 ' /"(0)
/ j i r/

The curve gi(y) is also plotted in Fig. 1; its extremum is —.152. The shearing stress at
the wall is proportional to

(18)

so that tw due to the g-flow is, to the first order in ik,

Tw = -P(avy/2b(. 811 + A96ik)eiat. (19)

For high frequencies, k 1, the WBK-method is appropriate. In Eq. (6), put

g = exp (^J s dvj (20)
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then, s has to fulfill the equation

s' + s2 + fs - f = ik. (21)
Now set

s = (ik) 1/2s0 + s, + (ik)-u\ + (ik)~\ + • • • (22)

which is also equal to

--©■w (£r-.+i(£r>-~
Introduction of Eq. (22) into Eq. (21) gives upon equating powers of (ik)wt:

so = 1, = if2 + if, (24)

= -iff ~ if",
The boundary condition g(0) = 1 is always fulfilled by the choice of limits in the integral
in Eq. (20), and g(a>) = 0 is assured by the selection of the proper sign if the double-
valued quantity (■ik)1/2, namely, the one indicated in the decomposition Eq. (23). The
resulting profile, using s0 and Si only, is

g = exp [-(I) i,] exp [-(|) ,] exp (-| ^ / dv). (25)

The first two factors represent the "Stokes-solution" [1], which would be obtained by
complete disregard of the /-flow. The last factor has the value of about .92 for jj = 1
and .59 for r/ = 2. If, for large values of k, the second factor in Eq. (25) already assures
a strong decay with rj, the last factor remains very close to 1 in the whole domain where
significant values of g may be found.

The shearing stress at the wall is

tw = P(avy/2bs( 0)eiat. (26)

Now the value of s(0) differs from the Stokes value only if terms up to s3 are included.
From Eqs. (24), Eq. (23) gives

s<°> -((!)"' (27)

Therefore, the ratio of the out-of-phase shearing stress, rWi , to the in-phase component,
tw, , is

^ = 1 - .654AT3'2, (28)
TWr

whereas for low values of fc, from Eq. (19), the ratio is

^ = ,612fc. (29)
TWr

In Fig. 3, the limiting cases for large and small k, Eqs. (28) and (29), are plotted,
together with an estimated curve which joins the two plots smoothly. It is seen that for
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Fig. 3. The ratio of the out-of-phase and the in-phase components of the shearing stress at the wall
as function of the reduced frequency k, for oscillations in z-direction (g) and z-direction (h).

a reduced frequency k larger than 2, the Stokes' value twJtWt = 1 gives errors less
than 20%.

For the case of complex a>, or exponential acceleration, only one special case will
be considered, for which the solution may be obtained without any computational
effort. Put k = — i, i.e., let the time-dependence of the plate velocity be given by the
factor e". The corresponding special equation for g is

g" + fg' - (/' + % = 0 (6a)
which has the solution

g = 1 - /' (30)
in view of Eq. (5). The complete solution is

u = axf'(v) + be"[I - f'(v)}
and the wall shearing stress is

tw = p(av)'/2f"(0)[ax - be"]. (31)

Here it is seen that, in contrast to the case k = 0, Eq. (11), the zero of the shearing
stress and the zero of the relative velocity between plate and fluid occur at the same
value of x[= (b/a)e°'].

Now let the plate move in the z-direction perpendicular to the xy-plane, i.e., the
plane of flow. If the plate motion is uniform, the case under consideration is identical
with the problem of the stagnation point in yawed flow, which has been solved by
Prandtl [2] and Sears [3]. For unsteady motion of the plate in z-direction, Wuest [4] has
already pointed out that the problem is soluble, and has given some numerical examples.
Both cases become exact solutions of the Navier-Stokes equations, if the basic steady
flow is the stagnation-point flow in the half-plane, as is presently assumed. If w, the
velocity component of the flow in the 2-direction, is taken in the form

w = ce<uth(ri), (32)

then Eqs. (5) to (7) remain unaffected, and the Navier-Stokes equation in z-direction
yields

ikh - fh' = h" (33)

with the boundary conditions h(0) = l,/i(°o) = 0. For oj = k = 0, Prandtl's solution
is obtained:
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f E di)
ho = ^  (34)

[ Edv
Jo

[see Eq. (15)]. A series development for small k analogous to Eq. (12) leads to the equa-
tions

K + fK = 0, h[' + fhl = h0 , hi' + fhl = fci , • • ■ . (35)
The solution of the second equation, adjusted to the boundary conditions Ai(0) =
0, is:

K = ho f (1 ~Jia)hn dv + (1 - ho) f § dv. (36)
J 0 flo J JJ n 0

The profiles h0 and hl are plotted in Fig. 1. The shearing stress at the wall in the z-
direction becomes, to a first approximation in k:

rw = -fi(avy/2c{.571 + .685tfc)e"". (37)

The investigation of the flow-behavior for k y> 1 follows completely the method
already employed for the gi-flow. Putting

h = exp if. rdij). (38)
in Eq. (33) yields

r' + r2 + fr = ik (39)

and the series development analogous to Eq. (22) gives

r„ = 1, r, = -I/, r2 = if + if, (4Q)

= -i//' - J/",
It is seen that r0 = s0 , ^ = Si •

The shearing stress at the wall again differs from the Stokes value only if r3 is in-
cluded; to this approximation,

rm --(I)'"- ((!)"' -;s/"«»] 4«
and we obtain

^ = 1 - .215AfV2 (42)
TWr

whereas for k <$C 1, from Eq. (37),

^ = 1.20&. (43)
T Wr

As before, both limiting cases are plotted in Fig. 3, together with an estimated smooth
transition curve. It is seen that the Stokes limit is approached faster by the /i-flow than
by the g-flow; for k = 1 the deviation for the A-flow is about 20%.

A further set of exact solutions may be obtained if the basic steady, two-dimensional,
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stagnation-point flow is replaced by a three-dimensional one. It is not necessary to
assume rotational symmetry; the "potential" flow along the plate may be of the form
u — a^ x, w = a2z with ax a2 . The steady viscous solution has been obtained by
Howarth [5], If the plate moves or oscillates in any direction in the xz-plane, further exact
solutions of the Navier-Stokes equation are easily obtained. No examples will be carried
out for the three-dimensional stagnation point, as the cases treated before are well
representative of the phenomena that may be expected.

It is interesting to note that the heat transfer to the plate remains unaffected by
the motion of the plate in its plane, if the plate temperature is constant. The temperature
field is obtained as a solution of the equation (in two dimensions)

dT , dT , dT v d2T
— + m— + vr— = -^-2, (44)dt dx dy (T ay

where T is the temperature and <r is the Prandtl number;.dissipation is neglected, as is
permissible for high temperature differences between the fluid and the plate. For con-
stant plate temperature (and constant temperature difference between the plate and
the fluid), the solution with the property dT/dx = 0 is appropriate. But the plate motion
under consideration only affects u and leaves v unchanged, so that for dT/dx = 0 no
effect on the solution of Eq. (44) will be felt.

If unsteady heat transfer is enforced by a variable temperature on the plate, which
becomes a function of time but not of x, the resultant equation becomes completely
analogous to that of the /i-flow, discussed before. For a = 1, the same solution can be
used as before; modifications for a ^ 1 are easily obtained.

A case which has not been considered so far in this paper is the problem associated
with a plate oscillating perpendicular to its plane, or the equivalent case of the oscillat-
ing basic stagnation-point flow. If the /-flow is unsteady, a df'/dt — term appears in
the non-linear equation (5), so that solutions with a harmonic time-dependence can
be obtained only to a linearized approximation. Ultimately, however, the unsteady
part of the flow will influence the development of the steady part of the /-flow, due to
the non-linearity of Eq. (5).

The linearized approximation, or the superposition of a small oscillating part to a
basically steady /-flow has been investigated by Lighthill [6] as a special case of fluctuat-
ing flow problems with arbitrary velocity distributions. The linearized solution exhibits
essentially the same features as found in the cases discussed before, inasmuch that a
quasi-steady type for low frequencies and a high-frequency type approaching Stokes'
solution can be distinguished. Lighthill finds as a "limit" between these cases, the value
of k = 5.6 for the reduced frequency, i.e., higher than the limits which have been found
above for the g- and A-flows. Lighthill also discussed the effects of the time-dependent
/-flow on heat transfer, which does not vanish, as the v-component of the flow is affected.

Considering the flow at the stagnation-point of an oscillating airfoil with nose-radius
R, the value of a is about U/R. For all reduced frequencies of practical interest in
airfoil flutter, the high frequency approximation is appropriate for all unsteady boundary
layer phenomena.

It may be noted that unsteady rigid rotary motion of the plate in its own plane
leads to problems related to the well-known Karman-Cochran case and its generaliza-
tions; again, however, solutions with harmonic time-dependence can be found only to a
linearized approximation.
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STABILITY OF SPHERICAL BUBBLES*
By GARRETT BIRKHOFF (Harvard University)

The perturbation equations for a spherical bubble of radius b(t) are [1, p. 306]

b(t)K' + 3b'(t)K ~ (h - l)b"(t)bk = 0. (1)
It is the purpose of this note to give a general stability criterion for the stability of (1).
Rewriting (I) in the form

x" + p(t)x' + q{t)x = 0, p = 3 b'/b, q = —(h— 1 )b"/b, (2)
we consider first the formal identity

jt {x2 + qx,2} = -^5 [2pq + q'], (3)

which is an easy consequence of (2).

Theorem 1. If q < 0, or if q > 0 and 2pq + q' < 0, then (2) is unstable. If q > 0
and 2pq + q' > 0, then (2) is stable.

Proof. If q(t) < 0, and x(l), x'{t) have the same sign for t = t<> , then they have the
same sign for all t > t0 . This is evident since x'(ti) = 0 offers the only possibility for the
first sign change, and it implies x"(/i) = —qx(tx), whence .r'(/, -{- dt) = — q(ti)x{ty)dt
has the same sign as x(tt + dt). Hence x(t) grows forever in magnitude; this is of course
the non-oscillatory case.

If q(i) > 0, then we are in the oscillatory case. To see this, replace (2) by the self-
adjoint

d(Px')/dt + Qx = 0, P = exp (fp dtj. Q = q exp (^f p dtj. (4)

Then we use the Bocher-Priifer variable 9, defined by tan 0 = — Px' x. Differentiating
tan 0, using (4), and simplifying, we get

dQ/dt = Q(t) cos2 0 + sin2 0 > 0. (5)

•Received Dec. 21, 1954; revised manuscript received March 17, 1955.


