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TWO DIMENSIONAL SINK FLOW OF A VISCOUS, HEAT-CONDUCTING,
COMPRESSIBLE FLUID; CYLINDRICAL SHOCK WAVES*

BT

T. YAO-TSU WU
California Institute of Technology

Introduction. The problem of the steady cylindrical source-type or sink-type flow
has been of interest to fluid-dynamicists for several reasons. First, it is known that the
corresponding problem of an inviscid compressible fluid has an exact solution containing
a limit line of rather special type, namely, the sonic circle [2]. To the exterior of this
circle the solution has two branches of values, one has its stagnation point at infinity
(subsonic branch) and the other starts with maximum velocity at infinity (supersonic
branch). Both of these two branches terminate at the limit line with infinite velocity
gradient. Therefore the viscous and heat-conductive effects are expected to play an
important role in continuing the solution further inward. Second, because of its cylindrical
symmetry, this problem is one of the few nonlinear flows in more than one dimension
for which there is only one independent variable, the radial distance. Consequently,
the equations are simple enough to allow a unified discussion of the various effects.
These are perhaps the reasons why this problem has attracted the attention of several
authors [3, 4, 5].

In the first part of this investigation the Navier-Stokes equations are given for the
cylindrical sink flow of a viscous, heat-conducting, perfect gas. Then, with some simpli-
fying assumptions, the qualitative properties of the solutions are discussed in detail for
the case of large Reynolds number Re. The definition of Re is Re = plalrl/p.l , where
r = r, locates the inviscid sonic circle with sonic speed al, and p, , are the fluid density
and viscosity coefficient at r — rx . These basic properties of the solutions thus compre-
hended serve as a useful guide in our final calculation of the solution.

In the second part of this paper the detailed calculation of the solution is carried out
for the case of large Re. It is found that there is no single expression available for the
solution uniformly valid in the entire flow region. The calculation is then performed in
three different regions characterized by the length rl and the parameter Re. For
r > rx + 0(Re~2/3) the approximate solution is obtained by using the PLK method**.
The result fails to be a good approximation for r too close to . For \ r — rl\ < 0(Re~2/3),
a different similarity rule for the variables leads to a system of cylindrical transonic
equations which governs the flow across the sonic region. These equations can be inte-
grated analytically for each of the different order terms. The result shows that the
solutions belonging to the supersonic branch all contain cylindrical shock-type flow
in this transonic region. In other words, these solutions gradually deviate away from
the inviscid supersonic branch, reach a minimum near r = rx and then approach asymp-
totically to the viscous subsonic branch. It is also found that the shock strength is of
0{Re~l/3) while the shock-thickness is of 0(Re~2/i), results which are quite different

*Received Sept. 10, 1954. This paper is the slightly condensed version of a Hydrodynamics Labora-
tory report [1] of California Institute of Technology. The work was sponsored by the Office of Naval
Research under the Contract Number N6onr-24420 (NR 062-059).

"This terminology was introduced by Prof. H. S. Tsien in a series of seminars, held in California
Institute of Technology in 1954, in which the method due to Poincare-Lighthill-Kuo was discussed.
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from those of the plane normal shock. Within this region, the thermodynamic variables
satisfy the isentropic relation up to the order 0(Re~wa) but deviate from it by a quantity
of 0(jRe~2/3). The approximate solution for r < r, — 0(Re~2/3) is subsequently carried
out. Finally, the entropy variation of the fluid, and the effect due to variation in viscosity
coefficients, are discussed.

The corresponding source flow problem was previously solved, using a numerical
method, by Sakurai [4]; a qualitative investigation on this problem was later elaborated
on many points by Levey [5], by making use of some conventional methods in nonlinear
differential equations. In the latter work, the orders of magnitude of many flow quantities
of interest were estimated. The present investigation on the sink flow is not merely a
special case of the cylindrical flow other than the source type, but also presents an
improved method which is more powerful than those used in the previous works (e.g.
Ref. [3, 4, 5]). The PLK-method applied to the outer region yields a set of reliable
boundary values for the transonic region and thus enables all flow quantities of interest
to be calculated quantitatively in all regions.

The author thanks Prof. H. S. Tsien for suggesting the problem and Profs. M. S.
Plesset and C. R. DePrima for their assistance on many points.

1. The fundamental equations. Here we are concerned with the two-dimensional
sink flow of a viscous, compressible, heat-conducting fluid with polar symmetry. The
only independent variable is the radial distance r from the origin. The radial velocity,
u, is the only velocity component and is always negative for sink flow. Let p, p, T, n,
n', X, R, C, , Cp denote respectively the pressure, density, absolute temperature, co-
efficients of shear and bulk viscosity, heat conductivity, gas constant, specific heats at
constant volume and pressure. The momentum equation is

"•£--£ + i b* s + !<»'- "> r i w] +2" i (?) <>•'>
and the energy equation is

pur ■
d (u2 ,rT\ d f[.dT du2 2 , /1 du* v?V
dr\2 + C'T) - SVT dF + + 3^ ' \2 ~dr 71. (1.2)

The continuity equatior can be written in the following form if m denotes the sink
strength,

2xpwr = — m. (1.3)

The equation of state is assumed to be that of a perfect gas,

p = RPT. (1.4)

Equations (1.1 — 1.4) are a system of nonlinear differential equations for four variables
u, p, p and T if n, n', X and C„ are known functions of T.

To reduce the equations to nondimensional form, the following nondimensional
quantities are introduced:

r* = r/r, , j? = logr*, w = —u/ai , 6 = T/Ti = (a/aO2,
(1.5)

V* = V/Pi » P* = p/pi > P* = p/pi > p'* = p'/pi »
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where quantities with the subscript 1 are fictitious quantities which would occur at the
local Mach number unity for nonviscous and non-heat-conducting gas. Thus, with y
equal to the ratio of specific heats, assumed constant throughout, the sonic speed ax
at r = r, is given by

a? = yPi/pi and 2irp)airl = m. (1.6)

The continuity equation then becomes

p*wr* = 1. (1.7)

Here w is always positive for sink flow. The equation of state is now

p* = dp*. (1.8)
Eliminating p and p in Eq. (1.1) by using (1.3) and (1.4), and introducing the non-

dimensional quantities, with r) = log r* as the independent variable, we obtain

dw 1 f d /  0~|
di7 y L dt) W w J

- +*>(§ -»)+[<>+*> t+*»] %}■ " ■•»
where

a* - (Re)-1 = ^ = (1 + 3fc)#i. (1.10)

a* thus denotes the inverse of the Reynolds number and will be considered much smaller
than unity throughout this paper; whereas k expresses the relation between the twe
viscosity coefficients. Stokes' assumption on the value of p.' states that

/ = 0 or k = -1/3. (1.11)
As this assumption does not agree with observations for many kinds of fluid [6], condition
(1.11) will not be imposed on the final calculation of the flow field.

By using again Eq. (1.3), the energy equation (1.2) can be integrated once to yield
the following nondimensional form

IT + v[y-4r % + » + *> % + . (1.12)2 ' y - 1

where a denotes the Prandtl number

<r = O/X. (1.13)
The integration constant on the right hand side of Eq. (1.12) is chosen as shown above
so that the limit solution for vanishing viscosity agrees at large r with that of a nonviscous
iso-energetic flow.

Equations (1.9) and (1.12) are the two equations for two unknowns w and 6. The
boundary conditions for them can be determined by requiring that they tend to their
respective inviscid solutions as 7? —> oo so that these two solutions can appropriately be
compared later.

1.1 The inviscid solution. The solution for sink flow of a compressible inviscid gas
can be literally obtained by putting a* = 0 in the above equations without justifying
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the validity of such a simplification. The solution of this reduced system of equations is
known to be

(1.14)

and

~ ~ 1 w\ P* = (P*y = eyny-1). (i.i5)2 2
The value of r, can be expressed in terms of stagnation state as

m m
2iraiPi 2wa0po

/„ _L_ i\»/»(ir + »)/(T-l)

where al = yp0/po and p0 , p0 are the isentropic stagnation pressure and density. Equa-
tion (1.15) simply states the iso-energetic and isentropic relations.

This inviscid solution w(r) given by Eq. (1.14) is plotted in Fig. 1. It gives no solution
for r < rx ; but for r > r, , w is a double-valued function of r. On one branch w tends to

Fig. 1. Graph of inviscid solution.

zero so that thermodynamic variables tend to their stagnation values as r —»<»; on the
other branch w tends to the maximum speed attainable [(7 + 1)/(7 — 1)],/2, and the
thermodynamic variables tend to zero as r —»<». They will be designated as subsonic
and supersonic branch respectively. Both of these branches terminate at r = r1 with
sonic speed (at which the fluid speed equals the local speed of sound). The slope of the
curve w(r),

dw 2 2, 2 + 1 y — 1 3V/Ct-1>5*-7+T»<» _1)  2 w)

is much smaller than unity for r » r, on both branches and consequently viscous effects
become comparatively unimportant there. But as r —> , w —» 1, dw/dr becomes nu-
merically unbounded, and thus the viscous force near r = ry should play a role as sig-
nificant as those of inertia and pressure forces.
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Now this inviscid solution will be used as a guide to study the sink flow of a real
fluid governed by Eqs. (1.9) and (1.12) for large values of Re, in the sense that it is
assumed that the limit of the viscous solutions for vanishing viscosity approaches the
inviscid solution as r —for both subsonic and supersonic branches. By continuing
these viscous solutions backward in r where viscous effects become more and more
prominent, it is expected that the real fluid, affected by viscosity and heat conduction,
will flow across this fictitious sonic circle, which is a limit line when viscosity is neglected.

It may be remarked here that the equations for source flow of real fluid can be obtained
from (1.9) and (1.12) by changing the sign of the terms with factor a* if w again represents
the absolute value of the radial speed, normalized relative to ax [5]. Hence the inviscid
solutions for source and sink flow are identical, but their respective viscous solutions
will be shown later to have quite different features for all r.

2. Properties of the solution curves.
2.1. Approximate differential equation in the "phase space". In order to study the

qualitative properties of the solution curves, several assumptions will be introduced in
this section to simplify the analysis while most of the important features of the original
system will still be maintained. The Prandtl number, a, is assumed constant because n and
X have almost the same dependence on temperature. In this section, ju is also taken to be
constant so that n* = 1. When the complete solution is calculated later, these assump-
tions introduced here become unnecessary.

Equation (1.12) can be integrated when the Prandtl number

<7 = |(1 + 4a*fc)/(l + k) (2.1)

(under Stokes' assumption, k = —1/3, then <r = 3/4 — a*), and the final integral is

9 ~ (1 + 4a*A>2] = E exp (~«rr,/«*) = Z?(^) , (2.2)

where E is the integration constant. The value chosen above for <j is actually not far
from experimental data (a = 0.72 for air at standard condition). As a only appears in
the coefficient of the derivative in Eq. (1.12), it follows from the theory of differential
equations [Ref. 7, p. 142] that the solutions and all their derivatives will be continuous
in a for > 0, — c° < <r < °°. Thus the assumption of choosing this particular value of
a would merely lead to simplification of analysis rather than any material change of the
solutions. If we further require by physical argument that the deviation from the iso-
energetic relation expressed by the term with the arbitrary constant E shall not over-
whelm the left hand side terms for r < rx , we may assume that E = 0. This restriction,
however, can again be relaxed when the complete solution is discussed later. It will then
be shown that E is indeed of the order 0(a*). Thus the particular solution with E = 0
would still provide a good approximation to the complete solution.

Substituting Eq. (2.2) with E = 0 into (1.9) and eliminating the explicit dependence
on 17 by the substitution

we obtain

™,n2 v
dw

Tr dw dw
F--sr--'*' <2-3>

aw2V + 7[1 — (1 — aa)w2] — w{l — [0 + (a — l)a]w2} = 0, (2.4)



398 T. YAO-TSU WU [Vol. XIII, No. 4

where

7TTd +')<■*. '-Thr^r- (2-5)
The variable F is closely related to the fluid velocity gradient. Since the term aa and
(a — l)a in the brackets are merely corrections to constant coefficients of 0(1), the
properties of Eq. (2.4) would not be altered if we had neglected these terms in order to
simplify further algebra. Thus the approximate differential equation

aw2V ^ + F(1 - w2) - w(l - 0w2) = 0 (2.6)

in the phase space (w, F) is expected to exhibit all important features of the original
system, Eqs. (1.9 — 1.12), for n* = 1. An equation similar to (2.6) was derived by
Sakurai [4] and later was discussed in detail by Levey [5] for source flow in a real fluid.

2.2. Properties of the solution curves in phase space. Equation (2.6) is nonlinear and
cannot be integrated. However, several important features of the solutions can be readily
seen by studying the properties of the vector field (w, V) defined by Eq. (2.6), such as
the type of its singular points, the curves of zero slope and zero curvature together with
some obvious isoclines.

2.2a. The curve of zero slope; the inviscid solution. Let (?, be the curve on which dV/dw
given in Eq. (2.6) vanishes, Gx is then given by

V = w(l — /3uj2)(1 - u>T\ (2.7)

which is also the inviscid solution in w — F plane. The function F, (w) given by Eq.
(2.7) has a simple pole at w = 1 (the fictitious sonic circle), and two zeros at w = 0 and
w = /3~1/2 which correspond respectively to the subsonic and supersonic branch at
r = oo. Near the origin, F, (w) given by Eq. (2.7) has the following power series expansion

F, = w + (1 - $)w3 + (1 - 0)w5 + (1 - $)w7 + • • • , (2.8)

which starts from w = 0 with slope unity. Near the point w = 0~l/2, the expansion of
F,(w) is

2px I" 1 + 3/3 , 1/2 . 1 + 6ff + 02 , i/2 ,2Fl " 1 - 0 L1 2(1 - 0) 03 x) + 2(1 - 0)2 x)

1 + 10/3 + 5$

where

2(1 _/})* (p xY +•••!, (2.9)

x = w — f) . (2.9a)

This branch of the curve G\ starts from 0) with the slope 2/3/(1 — $). The curve
Gi divides the infinite strip 0 < w < /3~1/2 into regions of positive and negative slope as
shown in Fig. 2. In this strip, dV/dw given in Eq. (2.6) becomes infinite only on (i)
F = 0, 0 < w < /3~1/2, and (ii) w = 0, F 0. Besides, w = /T1/2, F ^ 0 is also an
isocline on which

dV/dw = (1 - 0)/a. (2.10)
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Fig. 2. Regions of positive and negative slopes; isoclines.

2.2b. Properties of the singular 'points. The only singular points of Eq. (2.6) are (0, 0)
and (0~1/2, 0). The origin is a singular point of higher order. But if one sketches the
vector field (dw/dt, dV/dt) defined by

dw/dt = aw2V, dV/dt = w(l - pw2) - 7(1 - w2)

along a simple closed curve in the neighborhood of the origin with the origin in its interior,
one finds that the Poincare index (see [8], p. 45) of this singularity is equal to — 1. Thus
the origin is a saddle point through which only two solution curves may pass. One of
these is w = 0 which either yields a trivial solution (7 = 0) or has no physical meaning
(7 5^ 0). The other solution curve starts from the origin with slope equal to 1 (which
coincides there with the inviscid solution) and thus represents the only possible radial
sink flow with stagnation at r = <». By substitution of a power series into Eq. (2.6)
(or by ordinary iteration), the asymptotic value, for small a, of this solution near the
origin is found to be

7 = + [(1 — 0) — a]tu3 + [(1 - 0) - a(5 - 40) + 4a]w5
(2.11)

+ [(1 - 0) - a(14 - 160 + 302) + 10a2(4 - 30) - 27a3K + • • • .

The point (0~,/2, 0) is a singular point of regular type. In the neighborhood of
x = w — 0~1/2 = 0, 7 = 0, Eq. (2.6) becomes

dV -20s + (1 - 0)7 + P(x, V)
dx aV + Q(x, 7) ^-LZ)

in which P and Q vanish like x2 + 72 as x, V —* 0. Thus the singularity [Ref. 8 pp.
37-44] is (i) a nodal point if a < (1 — 0)2/(80), (for air, 0 = 1/6, a < 25/48), or (ii) a
spiral point if a > (1 — 0)2/(80). As the problem will be confined to the case a <3C 1,
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we shall only consider this singularity to be a nodal point (which changes to a saddle
point for source flow [5]). All solution curves passing through this point will have at this
point two distinct slopes which can be calculated from the secular equation of Eq. (2.12),
namely,

X —a
= 0, (2.13)

20 X - (1 - 0)
which has two unequal positive roots

X, = (1 - 0) - 2«0/(l - 0) + 0(a2), X2 = 2a0/(l - 0) + 0(a2). (2.13a)

From these two eigen-values two eigen-vectors associated with Eq. (2.12) at (x = 0,
7 = 0) can be obtained. By using this result it can be shown that the solution curves
passing through (x = 0, V = 0) have near this point the following parametric repre-
sentation

V - x = C,ex", V - = C2ex". (2.14)

Since X, > X2 > 0, V, x —* 0 as t —> — °° . It also follows from the above equations that
there is an infinite number of solution curves, corresponding to arbitrary C\ and C2
(C2 0) which have the asymptotic value

+ C | x near (x = 0, V = 0); (2.15a)

and, in addition, there is another solution curve (~ C2 = 0) passing through this point,
of the value

V = (-   — , ^ a)x near (x = 0, V = 0). (2.15b)\ a 1 — 0/

The first group of solutions, given by Eq. (2.15a), have the same limiting value at r = co
as the inviscid solution and hence represent the many possible sink flows starting with
maximum velocity w = 0~I/2 at r = ®, while the solution given by Eq. (2.15b) is
physically irrelevant. The asymptotic value, for small a, of this physically significant
solution near the point x = w — 0~1/2 = 0 is

V ~ <M 1 I  , 8q202 ,V= , a \\ 1 + (i _ ^2 + (i _ py + "("i

■w2x r
- 0) L(1 + 30) + 2a + 0(a2)

2(1 - 0) L 1 ' d-0)

+ 2(i [(! + 60 + 02) + 2(5 + 420 + 3302) + 0(a2)

+ C \ x

where C is an arbitrary constant. The last term follows from Eq. (2.15a).

(2.16)

+
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2.2c. The curve of zero curvature. The second derivative of the solution V(w) can be
deduced from (2.6). Let G2 be the curve on which d2V/dw2 vanishes, the equation for
(?2 is, except where wV is zero, given by:

2V3 - w{\ + (iw2)V2 + af'(l - |8m>2)[F(1 - w2) - w(l - /3w>2)] = 0. (2.17)

The function V2(w) satisfying this equation has the following properties:
(i) For small values of a, V2 has only one real value for either

0 < w < 1 + § [(1 - /3)a/2],/3 or w > /T,/2[l + 4(1" fl];

V2 has three real values for

1 + | [(1 - /?)«/2],/3 < w < 0"1/2[l + 4(1 a_ 0];

Vi has two equal real values at

w = 1 + | [(1 - 0)a/2]1/3; w = ^-/2[l + 4(1 ^ and w = /3i-l/2

(ii) The curve G2 starts from the origin with slope equal to unity and has, in the
neighborhood of the origin, the following expansion:

V2 £* w + [(1 - 0) - a]u>3 + [(1 - 0) - a (5 - 4/3) + 4a2]w5
(2.18)

+ [(1 - /3) - a(14 - 16/3 + 3/S2) + 2a2(17 - 12/3) - 21a>7 + • • • .
(iii) The curve G2 crosses w — 1 at

72(1) = (1 - /3)2/3(2a)"1/3[l + 0(a1/3)] (2.19a)

with the slope

dV2/chv = (2/3)(l - 0)1/3(2a)_2/3[l + 0(a,/3)]. (2.19b)

(iv) When w = /3~1/2, V\ = 0, and F2 = /3~1/2. Thus G2 has a double point
at (/3~1/2, 0), where the curve has two different slopes 2/3(1 — /3)-1 [1 + 0(a)] and
(1 — /3)a_1 [1 + 0(a)]. Near this point these two branches of the curve have the following
expansions:

;•<!> ~
2 ~ (1 - $ 1 1 2q^ 1 8a^2 1 r\( 3\ 1+ (r^^ + (r=ir + 0(a)J

_ 2(i-xp) [(1 + m + 4a + 0(a2)] (2-20)

and

ftr2
+ 2(1 _ q, [(1 + 6/3 + /32) + 0(a)] +

F"-LTS:t[1" a^j"+ 0('"')]+ •

■}

(2.21)



402 T. YAO-TSU WU [Vol. XIII, No. 4

(v) The slope of the curve G2 becomes infinite at

w ~ 1 + f[(1 - fi)«/2]u\ V ~ -a-'/3[(l - 0)/2f 3
and

1 n—\/2+ i(T=x|. v~Ip~
(vi) For w » 1, V, ~ /3ic, F2 ~ fiw3 /2.
The curve G2 divides the (w — V) plane into regions of positive and negative curva-

tures as shown in Fig. 3.

V<0

w

Fig. 3. Regions of positive and negative curvature.

2.2d. Sketch of solution curves V(w); definition of cylindrical shock. The above dis-
cussions on isoclines, types of singularities, regions of positive and negative slope and
curvature, enable the solution curves to be sketched.

First let us consider the solution curve starting from the origin. Comparison of Eqs.
(2.8), (2.11) and (2.18) shows that, for a and w both small,

V^w) > 7(u>) > V2(w), (2.22)

the difference (Fj — V) being of 0 (aw3) while (V — V2) ~ 0(a2w7). Thus the solution
curve V (w) lies in between and G2 where the slope and curvature of V (w) are both
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positive. A careful study of the slope of V(w) and G2 indicates that the solution curve
lies above G2 for w > 0. Hence V(w) is a monotonic increasing function of w with in-
creasing slope, passing through w = 1 between the points V = (1 — fi)/a and V =
(1 — 0)2/3 (2a)~1/3, and finally ending up at w = /3~1/2 with the slope dV/dw = (1 — 0)/a
(cf. Eq. 2.10 and Fig. 4).

As previously shown in Eq. (2.16), there is an infinite number of solution curves
starting from (w = £T1/2, V = 0) with the same slope 2(3/(1 — /3). However,
for (w — /3_1/2) and a both small enough, comparison of Eqs. (2.9), (2.16) and (2.20)
again shows that all these solutions satisfy, for small negative (w — the following
inequality

V(w) < Viu(w) < V^w), (2.23)

as shown in Fig. 4. As w decreases from 0~1/2, V (for every finite C in Eq. 2.16) decreases
with increasing slope until it intercepts G2 with a positive slope. For further decrease

Fig. 4. Sketch of the solution curves in the phase space.

in w, the curve V should lie above a straight line with this positive slope at the point of
intersection because V has positive curvature in this region. Hence the solution curves
will eventually meet G, with zero slope. From there on, for further decrease in w, V
increases from negative values and later crosses V = 0 with infinite slope at some point
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in between w = 0 and w = /3~1/2, as can be shown by the method of bounding curves,
and will be made explicit in our later calculation. Further extension of these solution
curves shows that V increases with increasing w and finally approaches asymptotically
to the subsonic branch solution which starts from the origin. There is a particular value
of the integration constant C (in Eq. 2.16), say, C = C0 < 0, for which the solution
curve finally ends up at the origin with infinite slope. For C < C0 , the solution ceases to
have physical meaning. On the other hand, the solution curves for C > C0 have a very
interesting feature that these viscous solutions all exhibit the transition process from
the inviscid supersonic branch toward the viscous subsonic branch. Let us consider, in
particular, the solution with C = 0. It first intercepts G2 at (u>,, Fi), say, and then crosses
V = 0 at w = w2 . Since > 1 and w2 < 1 (as will be shown later), the flow between
these two states may thus be defined as that of a "cylindrical shock".* Inspired by the
result obtained in Eqs. (2.19a, b), we see that the equation governing such a cylindrical
shock flow can be approximated by the following similarity transformation

w = 1 + aW3w, V = a~1/3v, (2.24)

which will render all terms in Eq. (2.6) equally important in this flow region, that is,
for vanishing a,

v dv/dw — 2wv + (1 — 13). (2.25)

Since this equation governs the flow of both branches near the sonic speed, it may be
called the "equation for cylindrical transonic flow".

2.3. Sketch of solution curves w(tj) in physical space. From the definition of V(w)
given by Eq. (2.3), we have

17 = — J [F(w)]"1 dw + h, (2.26)

where the integral stands for an indefinite integral and

h - log (fTl) <2'26a)
so that y tends to its inviscid solution for tj large.

Now for the subsonic branch, V(w) > 0, hence jj is a monotonically decreasing
function of w. Moreover, for some value of w, V(w) is less than its corresponding inviscid
solution, F,(w) (see Eq. 2.22). Hence, from Eq. (2.26),

*?vi.(w) < Viun,(w). (2.27)

In other words, at every tj, (w)t„ is slowed down from its inviscid value due to the
viscous effect.

♦This terminology is adopted by both Sakurai [4] and Levey [5] to describe such type of flow. The
term "shock" is borrowed from its conventional meaning to indicate the transition from one branch to
the other, though the transition is rather different from that occurring in a plane normal shock. Perhaps
this terminology relates more closely to the conventional meaning of a shock for the constant C slightly
greater than Co (see Fig. 4), because then the jump in w and the slope dw/dr) in transition become greater,
and the position of transition is farther out from r = n (see Fig. 5). But since there is no adequate cri-
terion to distinguish one from another value of C, we shall retain this name. Another terminology, the
dissipation layer, is suggested by Prof. H. S. Tsien to avoid this ambiguity and, in addition, to stress the
importance of viscous effects in this layer.
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For the supersonic branch starting from w = /3~1/2, V{w) < 0 for w3 < w < P~1/2,
hence in this interval is a monotonically increasing function of w. At w = w2, (~ y =
tj2 , say), (dw/dtj) = — F(w2) = 0, and, from Eq. (2.6), (d^w/dy2) = (Fc2F/<iu>).-o =
(1 — fiw2)/(aw?) > 0, therefore w(ij2) = w2 is the only minimum of w on this branch.
For 17 < t}2 , v decreases with increasing w. Furthermore, because of the relation given
in Eq. (2.23), we have

Vn.(w) > for w > 1, V < 0. (2.28)

The above properties of the solution enable the solution curves to be sketched, as
shown in Fig. 5. As the constant C decreases from zero, the minimum value decreases
and the jump in w increases while the jump takes place farther upstream.

Fig. 5. Sketch of the solution curves in the physical space.

It follows from Eq. (2.24) that if we introduce

V = a/3l, w = 1 + a1/3w, (2.29)

then Eq. (2.25) becomes

-2t2)^ + (l -ft, (2.30)

which is the equation governing the flow near w — 1, ij = 0. Integrating this equation
once, we obtain

dw/d% + w2 = (1 — /S)£ + const. (2.31)

This equation will be integrated and discussed in our final calculation.
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3. Calculation of the solutions by using PL if-method*. In this section we shall
calculate w(rj), 0(rj) governed by the original system of Eqs. (1.9-1.12). Throughout this
section m will again be assumed constant so that n* — I, but no restriction will be imposed
on a and k. Consequently Eqs. (1.9) and (1.12) become

; [- g ■" >t ~ -] - -'-2r ■<%■- »)»• (3-1)
, +1^1 (1 + + r±l » + (T _ „ <£] , y±i, M

where a is given by Eq. (2.5) and

b = a/0 = (1 + 1/t)(1 + 1/fc)"1. (3.3)
Using the PLK-method, as described below, the generalization to the case n = n(T)
presents no particular difficulty. The calculation for the case when n is proportional to
local temperature is carried out in Ref. 1, Sec. 7. The result shows that all important
features of flow quantities for n* = 1 remain up to the term of 0(a2/3).

It was seen before that, even for a simplified version of these equations, such as Eq.
(2.6), the conventional perturbation method merely leads to asymptotic solutions for
small a near w = 0 or w = fl~1/2 (see Eqs. 2.11, 2.16) because the coefficient of w" does
not diminish as n —*<». This asymptotic result fails to be a good approximation to the
required solution as w deviates further from w = 0 or w = /3~l/2 and becomes almost
useless for calculations near w = 1. Now let us resort to the PKL-method, which is in
essence to expand the solution in terms of power series in a with coefficients as unde-
termined functions of a parameter £.

«>(£) = £ + «»'"© + aw{2\£) + • • • ,

>?(£) = '?<0>© + Wit) + aV2>© + • • • I (3.4)

0(f) = 0(O)© + «0(1>© + « 0<2,(£> + ••• •

The need of a parameter £ to represent the solution and that w starts with the term £
are clearly suggested by our previous discussions. Substituting these expansions into
Eqs. (3.1) and (3.2), noting that

dw/dri = w'/rj', dO/d-q = d'/n', d2w/dr)2 = w"(rj')~2 — (3.5)

where prime stands for d/d%, and then equating equal powers of a, we obtain the zeroth
order equations as follows:

[t£2 + £21 (*(<7f) - £0<oVO)'](i;<O)')2 = 0, (3.6a)

If we choose different from zero, then we have the zeroth order solution

(3.6b)

_l±±_1_±£f (3 7a)

1?<0)(£> = log f ^ 1 ] log
7—1

7+1 _ 7—1 f2
O O £ (3.7b)

*See the footnote in the Introduction.
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The integration constant in Eq. (3.7b) has been so chosen that when a = 0, £ = w and
y(0)(w) agrees with in viscid solution.

The coefficient of a in the expanded equations gives the following first order equations:

'?{(

+ (7 - i)£wa> = - be + ^ - ^)(1 - &~l> <3-8a>

(V0,Ti(27f + *(0V" + (T*2 - 0(ovu + r g (fl(,)/€) -

(3.8b)
- ({««» + ^W0'] = ^V0)" + «*(0,')s],

where b is given by Bq. (3.3) and

y —e =  1 [' - £ot«]- (3-8c)
Substituting Eqs. (3.7) and (3.8a) into (3.8b), and rearranging the terms, we finally
obtain [see Ref. 1, p. 25]:

I [1,<0,V» -

= (1 - «)[a-i-y + A + B

(3.9)
2ft

(«* " 1)'
where

(3.9a)

and the constants a, b, e are given by Eqs. (3.3) and (3.8c). Now in order to ascribe to
wa) a possibly lowest order singularity at ? = 1 to improve the convergence of the series,
we decompose Eq. (3.9) as follows:

— u(0)'„,(1'l = A R 2ft .
d£ [v J (ft2 - l)2 + B (ft2 - 1) ' (310a)

|= -(1 - e)[2^ - I)"2 + ySO? - l)-1]. (3.10b)

The solution of Eqs. (3.10a, b) is then

w(,)te) = -a&i -12)-1 - Bfd - em - f2)-1 log

= -(1 - «)[(1 - f)~' + I log I 1 - ? |].
The integration constant of Eq. (3.9) is first absorbed in j/(1) and is then omitted because
of its negligible contribution near £ = 1. In the above first order solution, wm and
rim have singularities at £ = 1 of the same order. After wm is so determined, 0(u(£) is
then given by Eq. (3.8a).

Proceeding in a similar manner to obtain the second order equations by equating
terms with a, we find that the resulting equations possess solution of quite lengthy ex-

7+1 _ 7—1 yl
2 2 5 (3.11a)

(3.11b)
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pression, in which starts with the term 2(1 — /3) (1 — <) (1 — £2)-4 followed by
terms of 0((1 — £2)"3), while u><3)(£) still can be made to be of 0((1 — J2)"1). Therefore
the final solution can be expressed parametrically as follows:

«>(£) f [\ * , nfd" Iat) ,7+1 7 - 1 t2 II-e-«LArr? + B-^r?-iog  — £ |J
(3.12a)

+ °(r^?)'
,<£) - -[log £ + ^ log | 3^ - y-^i £• |]

- o(i - + 5 log 11 - £' l] + «' 2(1(7->({i)~ 0

+ °((T^?? ' (1 - £")') + °
7+1 _ 7—1

2 2 *
(1—0)V(2a/3)

(3.12b)

where A, B are constants given in Eqs. (3.9a) and C is an arbitrary constant for the
solution starting from £ = /3~1/2, but C = 0 for the solution starting from £ = 0. The
term with C is included in the above equation in order to exhibit the behavior of solution
curves near the nodal point (w = /8~1/a, y = °°), as previously discussed in Sec. 2.2b.
This term is of higher order than any finite power of a. In fact, it has an essential singu-
larity at a = 0 and hence cannot be obtained by the expansion procedure. The value
of 6 is given by

+ a(7 - 1)[a + B log

_ , jL^a-^1 , Q( «' )
2 f + 2/3 1-f2 J + U\(l - £3)7-

7+1 _ 7—1 yl
2 2 4 (3.12c)

Several interesting features of the above solution may be mentioned here, (i) e = 0
for a = [2(1 + k)]'1 (= 3/4 if k = — 1/3, see Eq. 3.8c). With the value of a and k
lying in the experimental range, « is still a small number. Consequently, the variation
in a and k only contribute a small correction to the coefficients of 0(1) in the solution.
This fact confirms our previous statement in Sec. 2.1. (ii) By substituting Eq. (3.12)
into Eq. (2.2), it can be found that the arbitrary constant E is of 0(ae). (iii) The most
important property of the above solution is that it does not provide an approximate
solution with uniform accuracy over the interval of £ such that 0 < w < 0~1/2. As £
approaches unity, the higher order terms, especially in ??(£), become more important
relative to the zeroth order term. More precisely, the solution is good only for 0 < £ <
1 — Kan and 1 + Kal/a < £ < /8~I/2, K being a positive constant of 0(1). At £ = 1
± Ka/3, all terms in the expression for ?;(£) become of the same order, 0 («2/3); but the
convergence can be made sufficiently rapid by an appropriate choice of the value K.

In the subsequent calculation of the solution through the transonic region, we shall
only consider a particular solution with C — 0 and e = 0 in Eqs. (3.12). Furthermore, it
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has been found convenient to take K = 2(7 + 1)~1/3. With this value of K, we obtain,
from Eqs. (3.12), the following result:

(i) on supersonic branch, at w = 1 + 2aW3 (7 + 1)_1/3,

V = 2.28(7 + 1)VV/3 and dw/dr, = 0.615a"1/3(7 + 1)"2/3; (3.13a)

(ii) on subsonic branch, at w = 1 — 2a1/3 (7 + 1)~1/3,

r, = 1.766(7 + 1)17 V/3 and dw/dr, = -0.477a~1/3(7 + 1)~2/3. (3.13b)

These values will serve for the boundary conditions imposed on the transonic solution
to be obtained below.

That the PLK-method is powerful in solving this problem can still be stressed further
by the following argument. As the first order term in the expression for u>(£) (see 3.12a)
is quite unimportant in the aforementioned regions of £, one perhaps would try, instead
of Eq. (3.4), a simpler expansion

7j(w) = rj""(w) + ar/(1)(w) + ••• (3.14)

and a similar expansion for 6 in terms of w. It can be shown that the above expansion
will yield a solution in which 7j<0) is identical to inviscid solution, but ij(1> has, in addition
to a simple pole at w = 1, a pole and a logarithmic singularity at w = 0~1/2. Consequently
the assumed expansion (3.14) becomes invalid for r large on the supersonic branch, and
thus leads to an erroneous result.

4. The solution in the transonic region. To obtain an approximate solution in the
transonic region, as discussed in Sees. 2.2d, 2.3 (see Eqs. 2.24, 2.25 and 2.29) and also
as guided by the boundary conditions (3.13), first we distort the independent variable by
the transformation

V = «/3a (4.1)
and then expand w, 8 into the form:

w({) = 1 + a1/3wa)(£) + a2/V2)© + <*u/3,(£) + • ■ • , (4.2)

0© = 1 + a1/30a)(£) + a/30<2)(f) + <*0(3>(f) + • • • . (4.3)

With e = 0 (~ 2<r(l + k) = 1), Eqs. (3.1) and (3.2) reduce to

[1 — (1 — oa)u>2] ̂  + w{l — [0 + (a — l)a]w2} = aw2 , (4.4)

0 = ~ - (1 + ba)w2 + 0(a2). (4.5)

Substituting (4.1) and (4.2) into (4.4), we obtain the first order equation:

i-o-®
and the second order equation:

d2ww , „ d , (2K d+ (w"ww) = ~ («»')3 - (1 + PW". (4.7)

The correction due to the terms with constants a and b enters only in ww and higher
order terms.
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Now Eq. (4.6) can be integrated once to yield:

dy
dx^ + y* = x + x, , (4.8)

where

»- H1)'"-"'- -("rH' <«>
and the integration constant xt can be determined by using the boundary condition
(3.13) to give

Xi = 0.033 for the supersonic branch, ^ ^

xx — — 0.0056 for the subsonic branch.

The nonlinear equation (4.8) (see also Eq. (2.31)) is an approximation to the Navier-
Stokes equation, a case in which all the inertia, pressure and viscous forces are equally
important. Now Eq. (4.8) is of Riccati type, which, by using the transformation

vM-if, (4.11)
can be reduced to a second order linear equation:

—5 - (x + xx)v = 0. (4.12)

The solution of this equation for (x + asO > 0 is

v(z) = Mzl/3[I.m(z) + NIm(z)l « = |(« + x,)3/\ (4.13)

where I(z) is the modified Bessel function of the first kind, and M, N are the integration
constants. By using Eq. (4.11), the solution of Eq. (4.8) for (x + £,) > 0 is then

*'-(1+*>"•• «•">
The constant N can be determined by using again the condition (3.13).

The continuation of Eq. (4.14) into the region (x + x,) < 0 is provided by

(4.15)
z1/3IW3(z) = -?nJm (f), zU3I-W3(z) = f1/3J-I/3( f),

z2/3h,*{z) = tni-«M =
where

t = §[-(* + x,)]3/2.

Consequently Eq. (4.14) becomes, for (x + Xi) < 0,

/3fV/3 J2/3(f) + NJ-i/i(£) <. 2 J , r-\l3/2 (A

To discuss the above solution, we first note that the inviscid solution in this transonic
region, to the first order approximation within the 0(c*2/3), is

y2 = «, (4.17)
which has two branches for x > 0 and gives no solution for x < 0. Now before we de-
termine the value of N for the corresponding viscous solution, we may also note that the
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general solution, given by (4.14) and (4.16), is a semi-transcendental function of xi and
the second integration constant N. It can be shown, from the property of I,(z) at large z,
that in Eq. (4.14)

y—> xU2 as x when N > — 1,

y —> — x1/2 as x —*<*> when N = — 1,

and y has a simple pole at a certain finite z for N < — 1 (which is, of course, of no physical
significance). This result shows that the viscous solutions tend to their respective inviscid
values for x large in a manner which implies again that (w = /3~1/2, t] = oo) is a nodal
point (admitting more than one value of N) while (w = 0, y = oo) is a saddle point
(admitting only one value of N). However, for x + xy <0, Eq. (4.16) shows obviously
that 2/(f) has an infinite number of isolated simple poles at f where the denominator
vanishes. Since the properties of the solution curves in the (w, F) phase space exhibit
no such singularities, the solution (4.16), therefore, represents a good approximation to
the real flow only for f lying in the interval 0 < J" < f i — 5<flf where f i is the first
pole and 8 is a positive number, appropriately chosen such that ?y(f, — 5) is not yet too
large to void our approximation (4.2).

Having obtained the first order solution w(1'(£) = 21/3 (7 + 1)_1/3 y, the second order
equation (4.7) can be then integrated to yield

(Q = e~2*(C) f Mt)e2*U) d£, (4.18)

where

<f>(£) = f w"\() d$ and </<(£) = [w<n©f - (1 + /3Mf) + const.

It is obvious that w{2) (£) is bounded wherever ww (£) is bounded. Consequently, the
approximation is good even if we only take the first two terms in (4.2) and (4.3).

In order to obtain some numerical results, we first determine the value N in Eqs.
(4.14), (4.16) by using conditions (3.13) to obtain

N = — 0.585 for the supersonic branch, . .
(4.iyj

N = — 1 for the subsonic branch.

With these values of xx and N (see 4.10 and 4.19), the solutions are plotted in Fig. 6
(by using tables, Ref. [8]) from which several interesting results can be deduced as
follows:

(i) For the supersonic branch, the transonic solution starts from point A (see Fig.
6) with the coordinates

Wl = 1 + 1.6 [(7 + l)/2 ]"1/3a1/3, Vl = 2.9[(-y + l)/2]l/V/3. (4.20)

After the solution curve passes through a point of inflection G and then crosses the line
y = 0 (w = 1) at point B (see also Fig. 4) where

VB = 1.02 [(7 + l)/2 ]I/V/3(~Ffl = —1.05 [(7 + l)/2]-2/V1/3,

(dV/dw)B = —0.95 [(7 + 1)/2]-1/3cT2/3),
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-20 -1.0 0 1.0 20 3.0

Fig. 6. The flow velocity in the transonic region.

it reaches a minimum when it intercepts the curve y2 = x at C where

w2 = 1 - 0.45[(7 + l)/2]-,/3a1/3, v* = 0.2[(7 +. l)/2]I/3a2/3. (4.21)

It then increases from w = w2 to w = 1 at point D where

Vn = -0.88 (^-i)1/3aJ/3,

(~r„ - g -
That is, there is an expansion wave following the cylindrical shock.

(ii) The thickness of the cylindrical shock, as defined in Sec. 2.2d, is
( . l\l/3

—j a/3, (inr-space, Ar = (4.22)

across which the velocity has a total variation

Aw = iv, - w2 = 2.05[(7 + l)/2]"1/3a1/3; (4.23)

moreover,

w,w2 = 1 + 1.15 [(7 + 1)/2]_1/V/3. (4.24)

Combining Eqs. (4.22) and (4.23), we obtain

(Aw)(Av) = 5.5a. (4.25)

Comparing these results with those of a plane normal shock (e.g. Ref. [10]), we note
first that the plane shock strength (~ Aw) is quite arbitrary while for a cylindrical shock,
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Aw ~ 0(a1/3). The expression for shock thickness (Eq. 4.22) shows that At; ~ 0(a2/3),
although, after combining with Aw, the expression (4.25) agrees with that of a plane
shock [10] within the order of magnitude. The result (4.25) differs, however, from Levey's
result for the diffuse shock in a source flow (Ref. [5], Eq. 4.9), in which he explains the
discrepancy as due to some degree of choice of the definition of the shock thickness.
Our result also indicates that the maximum velocity gradient inside a cylindrical shock
is of order a~1/3, (in contrast to Levey's result: 0(a-1)), while for a plane shock, the
maximum gradient is of order (Aw)2 a~1 [10], which reduces to 0(aT1/3) if Aw ~ 0(a1/3).
The expression (4.24) differs from the Prandtl relation of a plane shock by a term of
0(a1/3) which here agrees with Levey's result (Ref. [5], Eq. 4.13). The differences between
the present results of cylindrical flow and those of one dimensional plane shock can
perhaps be realized by visualizing that the viscous forces exerting on the surfaces rdd
and dr of a fluid element are indeed of quite different nature from those exerting in plane
shock flow, since in the former case, the normal stress acting on the surface dr will have
a component in the radial direction.

(iii) On the subsonic branch, w is a monotonically decreasing function of 17. w = 1
at point E (see Figs. 6 and 4) where t]E = — [(y + 1)/2]I/3 a2/3 and the velocity gradient
(dw/drj)E = — VB = — [(7 + l)/2]~2/3 a-1/3 (see also Eq. 2.19a), which shows that the
solution curve of the subsonic branch passes w = 1 (see Fig. 4) slightly above the curve
G2.

(iv) The thermodynamic variables in this flow region can be deduced from Eqs.
(4.5), (1.7) and (1.8). That is, in the expansion (4.3) and

p*(|) = 1 + a,/3p(ute) + a2/y2,(|) + • • • ,

(4.26)
P*© = 1 + al/3p(1)© + a2/V2'(|) + ••• ,

we have

*(,)© = -(7 - 1)('^~2_^) U3y®< (4.27)

Pu> =7P(1) =^LT*a\ (4.28)
7—1

where y(g) is given in Eqs. (4.14) and (4.16). The value of p(1) and 0C1' vs. 77 is plotted in
Fig. 7. The supersonic branch starts with compression and is then followed by an ex-
pansion wave, while the subsonic branch expands continuously. Equation (4.28) simply
states that p*, p* and 6 satisfy the isentropic relation up to 0(a1/3). This implies that the
entropy variation, if any, across this region must be of order at least a2/3.

It should be pointed out here that Eq. (4.17) fails to be a good approximation for
j7 > 0(a/3). Consequently the transonic solution, which approaches the asymptote
given by Eq. (4.17), cannot be extended beyond the transonic region. It then becomes
obvious that the patching of these solutions with the outside solutions must be made
at 7; = 0(a2/3). This behavior of the present solution is further indicated by the above
result that the values of the variables given by the outside expansion at )? = 0(a2/s)
fit right into the transonic similarity rule.

5. The solution in the inner supersonic region. The above transonic solution
shows that the supersonic branch flow approaches asymptotically to the subsonic branch
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Fig. 7. The thermodynamic variables in the transonic region.

and for t] < t)E both branches have supersonic local speed. We shall proceed to find the
solution for ?i < ve ■ Let us consider first the continuation of the subsonic branch. For
the sake of convenience, we shall take the point E in Fig. 6 as the boundary such that
at E, wB = 1 and

Ve - ~KT«"> (£), * (7-tTv" <5-»
Now rewrite Eq. (2.6) in the following form

dV
dw

= i(!_ n +
a \ W / aW V (5.2)

From the properties of the solution of this equation (see Sec. 2.2) we recall that for
V < Ve , V > VE , that is, in this region V is at least of 0(of1/3). It then seems convenient
to adopt an iteration method to approximate the solution for t] < tjb . As the first itera-
tion, we neglect the second term on the right hand side of (5.2) and integrate, using
(5.1), to obtain

7 = (^Jl! + (^rV\ (5.3)
aw \ 2 /

Substituting this value of V into the right hand side of Eq. (5.2) and integrating twice,
using again Eq. (5.1), we obtain, as the second iteration, the following asymptotic result,
for a small, valid for w > 1,

' -«- H1)'"+o(«iog «>• <5-»
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This solution is in good agreement with the value given by Eq. (4.16) for vb < v < Vr •
It can be seen at once that as w —* @~1/2 (the maximum velocity at which 9 = 0), 17
approaches its smallest value r)m , say, where

VVe = —1.6[(7 + l)/2],/V\ (5.5)

Thus we see that the flow supposedly terminates itself at a distance of 0(a2/J) to the
inner side of 17 = 0, beyond which there is no solution to our present system of equations.
If one were to investigate further the possibility that one could still obtain a solution
of physical reality for rj < -qm , one would face some rather dubious situations. For
instance, near 17 = r)m , the density, temperature and pressure all beeome so low that
the validity of the equation of state for a perfect gas (1.4) is questionable. Besides, the
fact that the viscous stresses reach the magnitude of the fluid pressure near 7/ = r]m sets
a likely limit on the applicability of the Navier-Stokes equation (1.1) and also raises a
question as to whether Burnett's higher viscous terms (Ref. [11], p. 271) should be em-
ployed to overcome the present difficulty. Of course, it would seem plausible to continue
our solution further inward by assigning appropriate values to the arbitrary constant
C in (2.16). Nevertheless, it is still impossible to bring the flow to tj = — 00 (r = 0) on
account of the singularity that pu ~ r~l near r = 0 (see Eq. 1.3). To clarify these rather
vague points is beyond the scope of this paper, although such clarification is certainly
desirable.

6. The entropy variation. We define S to be the specific entropy,

TdS = CpdT - p-1 dp (6.1)

then the energy equation (1.2) can be written as

puT ^ = div (X grad T) + <i>, (6.2)

where $ is the viscous dissipation function, which in this case is,

$ = §(/ + 2M)[(!)'+(")"]
. 4 , , . u du

3 r Or <63>
The above definition of S of a fluid element is clearly for an open system since the heat
exchange by conduction, and hence a net flow of entropy, occurs with the neighboring
elements. Thus Eq. (6.2) merely expresses the energy balance, in terms of S, of a fluid
element—a system not isolated, in the thermodynamic sense, from its surroundings.
The analysis of formulating the second law of thermodynamics for the fluid flow case by
making the system closed has been investigated in some detail by Tolman and Fine
[12] and discussed later by Curtiss and Hirschfelder [13] from the point of view of
statistical mechanics. Their idea is, in essence, to state that the change AS in the entropy
of a system should consist not only of the net increase in entropy produced by irreversible
processes taking place inside the system, but also of the entropy carried into the system,
due to conduction of heat energy, equal to div [XT-1 grad T] per unit volume. Following
Tolman's notation, we may thus write

p(§f)= p(§f)ir,+div (I ̂  4 ^
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In the present case, Eq. (6.4), after combining with (6.2), becomes

pMr(^)| r = | (grad T)2 + *. (6.5)

As we are only interested in the qualitative features of our later results, we simplify
these equations by using the assumptions:

n* = n/ti\ = 1, fi' — 0, Cp ,C. — constant, a = 3/4. (6.6)

Then the nondimensional form of Eqs. (6.2) and (6.5) are respectively

0 ds 4t J 1 <?d , fdw\2 dw , „\ m<6-7)

« !dt\ 4y J «-• IdlY . (du'Y dw .
- —i W,„. " T' \—i U + W " " 57 + " / (6'8)

where

s = S/C, . (6.9)

Though the sign of the terms on the right hand side of (6.7) is in general indefinite, the
value of the right hand side terms of (6.8) is, however, positive definite. Therefore (s)irr
increases monotonically along the fluid flow, as predicted by the second law for a closed
system. Subtracting (6.8) from (6.7), we obtain an equation which can be integrated
to yield

, 4y *d log 6
s irr. = s + ya* d* , (6.10)

where the constant of integration is so chosen that both s and sirr tend to s0 as -q —>&> t
s0 being arbitrary.

In order to see that s of the shock type flow reaches a maximum near w = 1, we
substitute Eq. (2.2) with E = 0 into (6.7) and obtain

9 ds
y — 1 dr)

4t * fd2w . dw \" Hi?+ 57" 4 (61l)
This equation shows that for 17 outside the transonic region, the variation in s is at most
of 0(a). Within the transonic region, d2w/dt)2, being of 0(a-1), overwhelms the rest of
the terms in the bracket and hence (6.11) reduces to

6 ds 47 A d W /i , 2/3\n /n 1 c\\7^1^="3a U,^?(1 + 0(a )}- (6-12)

It then follows that s assumes its maximum value at the point where the curvature of
the w = 10(77) curve vanishes (d2w/dr]2 = 0 at point G in Fig. 6 and at this point d2s/dr)2
is less than zero). However, from (6.10), the quantity s + (4 ya*/3)d log 9/drj does not
have an extremum in the entire flow region. The above result is very much the same as
that of a plane shock, as it can be shown that the velocity has a point of inflection at
sonic speed where the entropy is also a maximum.
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Integrating Eq. (6.11) with the aid of Eqs. (3.1) and (3.2) under condition (6.6), we
obtain

s - s0 = log [e{wr*y~l)] = log 6 + (7 - l)(log w + ij), (6.13)
where

s0 = log (poPo7),

so that s —> s0 as v —> 00. This equation is actually the definition of s usually given for
a perfect gas. Substitution of the solution (3.12) into (6.13) shows that

As ~ 0(a) for 7j > 0(1). (6.14)

Within and around the transonic region, we substitute the solution (4.1)-(4.3) into (6.13)
and simplify the expansion, then we obtain

s - So = a2/\y - 1)[(7 + l)/2]1/3(x - y2) + 0(a), (6.15)

where x and y are defined by Eq. (4.9). The value of y = y(x) is given by Eqs. (4.14),
(4.16) and also plotted in Fig. 6. Equation (6.15) is consistent with the fact that s = s0 =
constant along the inviscid solution y2 = x. The variation in s along supersonic and
subsonic branches of our solution follows directly from the data shown in Fig. 6. The
result is plotted in Fig. 8. As t\ decreases along the supersonic branch, the entropy s

Fig. 8. The entropy variation across the transonic region.

first increases until it reaches the maximum s0 + 1.2 a'3 (7 - 1) [(7 + l)/2]l/3 at
point G, then decreases and later assumes once again the value s0 (the value of s at
17 = 00) at point C where wa) is minimum. After that s decreases rapidly with further
decrease in v and eventually tend to — °° as the flow solution terminates. On the subsonic
branch, s decreases monotonically with decreasing tj. However, by substituting Eqs.
(6.15) and (4.3) into (6.10), it can easily be shown that (sirr.) increases monotonically
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with decreasing 17 and the variation in (sirr.) is of order 0(a). Consequently, the result
that s —> — 00 as t; —> rjmin can be explained by visualizing from Eq. (6.10) that d(log 8)/dy
decreases beyond all bounds as 77 —> r;min . Physically, this probably implies that the flow
is rather far from its equilibrium condition due to the large velocity gradient, inducing
a rapid decrease in temperature, which even the important heat conduction in this
region cannot compensate.
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