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1. Flow problems. We shall be concerned with connected networks. These will be
defined as finite connected graphs, on which the boundary is explicitly specified.

As a graph1, such a network consists of a finite set N of nodes (or vertices),
Ai , • • ■ , An , certain nodes being joined in pairs by a finite set L of oriented links (or
branches) ai , • • • , ar . Thus the graph is specified by an incidence matrix of n rows
and r columns, || tkj ||, where eki is +1, —1, or 0 according to whether the node Ak is
the initial node, the final node, or not incident on the oriented link a,- . It will be assumed
that each link a,- joins exactly two nodes, hence we may write a, = Ai(j)AfU) , where
Ann is the initial node of the link a, and Anj) is the final node of the link a, . This
implies that the incidence matrix has just two non-zero entries in each column (one
being +1 and one —1). It will also be assumed that each node Ak is incident on at
least one link. This implies that each row of the incidence matrix has at least one non-
zero entry.

Further, a subset dN of N, called the boundary, is supposed to be specified. This
subset dN may or may not be empty. If dN is not empty then the elements of dN are
called the terminals of the network. Finally, the network is supposed to be connected2
in the usual sense that a graph is said to be connected.

We shall consider first a special class of network problems, which we shall call "flow
problems". Whether they concern hydraulic networks or direct (electrical) current
networks, flow problems involve two real valued functions: a potential function u(At)
defined on the nodes, and a current function i(a,) defined on the oriented links. In hydrau-
lic networks u(Ak) is the pressure head; in direct current problems, it represents the
voltage.**

In network flow problems, leaks are neglected. One thus assumes, at each interior
node Ah in — dN, Kirchhoff's node law

r

X) ««*(<**) = 0, h = 1, ,n; (1)j-i
where, in view of the definition of the incidence matrix, the summation is effectively

Received Nov. 1, 1954.
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'See W. H. Ingram and C. M. Cramlet [12], J. L. Synge [20], and the books by O. Veblen [7] and

D. Konig [9]. The basic ideas are due to G. Kirchhoff [1] and H. Poincare [4, 5]. (Numbers in square
brackets refer to the bibliography at the end of the paper).

2 Actually, this assumption plays a very small r61e, but it simplifies the statement of various results.
**Professor W. Prager has kindly drawn our attention to the occurrence of similar flow problems in

the mathematical study of the distribution of traffic over a network of roads, see [28].
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taken only over the links incident on the node Ah . For physical equilibrium, the currents
must also satisfy certain equilibrium relations

i(at) = Cj(Au,), j = 1, • • • , r, (2)

where Aw, = u(AiU)) — u(AfU)), with AiU) the initial and AfU) the final node, respec-
tively, of the oriented link a,- .

Physically, the conductivity functions c,(Am) are usually increasing and continuous.
In our theorems below, we shall usually assume one or both of these conditions. For
reference, we write3

c, (Am) is a strictly increasing function of Am, (2a)

c,(Am) is a continuous function of Am. (2b)

Thus, in hydraulic problems, it is commonly assumed that

c,(Am) = if,-sign (Am)-| Am |°, where Kj >0, a > 0. (2c)

(For turbulent flow in pipes, a = 1.85 is commonly accepted.) In direct current problems,
a linear relation

i(a,) = Cj Am j , (2d)

is generally used. Since the general case will be considered in Sec. 4, we shall omit the
physical condition c, > 0, which corresponds to (2c) with a = I, and gives the classical
case treated by Kelvin [2].

In summary, we will assume (1) at all "interior" nodes (i.e., the nodes of N — dN)
and (2) on all links. At each node Ah of the boundary dN, the total "influx" vh must
clearly satisfy

vh = E ■ (3)
i

Comparing this last equation with (1), we get the necessary condition

E n = 0, (30
summed over dN. [This follows because

E 11 tkiUfli) = 0,
h-1 j =1

and (1) then implies

E E «A,*(a,) = 0,
3jv ; -1

which is (3').]
To obtain a "boundary value problem", some condition must be given at each

terminal Ah in dN; for example, one might assume
I. The potential u{Ah) is given, or
II. The "total influx" vu at Ah is given.

Because of the obvious analogy with potential theory, we shall refer to a boundary
value problem in which a condition of Type I is given at each terminal as a "Dirichlet

3The significance of (2a) and (2b) was first stressed by d'Auriac [14] and Duffin [17].
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problem". Similarly, if the total influx is specified at each terminal we shall speak of a
"Neumann problem". Problems involving both types have been treated in the literature4.
Still more generally, one can consider "mixed" conditions, of the type (notice that II'
includes II as a special case)

II'. A functional relation vh = Fh{u) is given, where

Fh (u) is a non-increasing, continuous function of u. (4)

(In heat flow problems, this would correspond to a linear or non-linear "law of cooling".)
2. Uniqueness theorem. It is not hard to prove a general uniqueness theorem, in-

volving boundary value problems with boundary conditions of Types I, II, or II',
which is adequate for most physical flow problems. To formulate it, let u = u{Ak) and
i — iifli); and u' and i' represent two different solutions of the same boundary value
problem. Consider the expression

D* = (** ~ ^)(Auk - Au'k)
(5)

= X [c*(Aw*) - ck(Au'k)][Auk — Au'k].
L

In the linear case, clearly (5) simplifies to

D* = X ck(Auk — Au't)2. (5')
L

In any case, the following result is immediate:
Lemma 1. If all the conductivity functions ck(Au) satisfy (2a), then D* S: 0. Strict

inequality holds unless u — u' is a constant.
We now make a second evaluation of D*. By (3),

X) [ck(Auk) - ck(Au'k)][Auk - Au'k\ = J2 {[ck(Auk) — c*(AwO][]l tkt(u(Ak) - w'(.4t))])
L L N

-£(»»- K)[u(Ak) - u'U*)];
N

where, for example,

vh = 2 «*;*(«,)
L

is the "influx" corresponding to the potential u at the node Ak of N. It follows from
(5) and (1) that

D* = 12 ("A - vOK^a) — m'(^4a)]. (5+)
dN

For boundary value problems involving only conditions of Types I or II at the terminals,
one has D* = 0. If conditions of Types I, II, or II' occur, provided that (4) is assumed,
clearly D* ^ 0. Comparing with Lemma 1, we get

Theorem 1. There is at most one solution to any boundary value problem defined
by (1) and (2), with boundary conditions of Types I, II, or II', provided that (2a)

"D'Auriac [14] and Duffin [17] consider the Dirichlet and Neumann problems, plus a special "mixed"
problem, where a Dirichlet condition is imposed at some boundary nodes and a Neumann condition at
the remainder of the terminals. D'Auriac proves uniqueness and Duffin, existence and uniqueness
theorems.
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and (4) are assumed and that, in the Neumann problem, potential functions which differ
only by a constant are considered to be identical.

3. Dissipation function; variational principle for the Dirichlet problem. If i and u
are any two functions defined on the oriented links and the nodes, respectively, of a
network, we may define the dissipation function as the sum

D = X i(ak)Au(ak). (6)
L

(The name "dissipation function" expresses the fact that, in the two physical problems
mentioned in Sec. 1, the expression D represents the rate of energy dissipation.) We
shall now derive an alternative formula for D, analogous to (5+) for D*. Since

one has

and thus

Au(ak) = w(/l,■(*,) — u(Ant)) = X) fhMAk),

X ck{Auk)Auk = X \Ck{Auk) J] thku{Ah)) = X vhu(Ah);

D = £ vhu(Ak). (6+)

The expression D, according to (6+), represents the rate of energy influx.
In the linear case, the dissipation function reduces to XU ck(Auk)2, and it is classical5

that this is minimized by the solution of the network problem over the class of potentials
assuming the given terminal potentials. We shall now derive an analogous variational
principle for the non-linear case. However, this will not, in general, involve the dissipa-
tion function.

To formulate the new variational principle, we suppose u is given on dN, but is
unknown on N — dN. For any assumed values of u on N — dN, we can then satisfy
(2) automatically by defining i(ak) — ck{Auk) on each link ak . It remains to satisfy (1),
and for this we shall find a variational formulation. Namely, define the functions Ck by

so that the derivatives

/%Au

Ck(Au) = / ck(x) dx,
J 0

dr
C^ = C<(AM);

for simplicity, we shall assume condition (2b). (Duffin [17, pp. 965-967] uses this same
device of auxiliary functions for what we call the Neumann problem.)

Theorem 2. For given u(Ah) on dN (i.e. for the Dirichlet problem), assuming (2b),
the first variation of

V(u) = £ Ck(Auk) (7)
L

is zero at each ("interior") node of N — dN if and only if Kirchhoff's node law (1)
holds at each interior node.

6See W. Thomson [2]; J. C. Maxwell [3, vol. I, pp. 403-408].
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Proof: (By the first variation is of course meant the following limit:

5V(u) = J( V(u + eSu)

where 5u is any potential function defined on N but which vanishes on dN.) By direct
computation, writing ak = Ai(k)AfW , one has

5F = 22 C 'k(Auk)[Su(Ahi,)) 5u(AfW)]
L

— 22 \C'k(Auk) 22 (kkdu(Ak) J
L N

= 22 \Su(Ah) 22 *hki(ak) (.
N L

For Ah in dN, the number du(Ah) is zero, while for Ak in N — dN, the 5u(Ah) are arbi-
trary. The conclusion of Lemma 2 is now evident.

Corollary. If (2a), (2b) hold, then Kirchhoff's node law (1) holds if and only if
V(u), considered as a function of the arbitrary values of the potential at interior nodes,
has an absolute minimum.

For if, regardless of (2a), the function V(u) has even a local minimum, then 5V = 0,
and hence Kirchhoff's node law holds. While, on the other hand, if (2a) and (2b) hold,
then V(u) is a convex function of u, since it is a sum of convex functions either of the
individual uh = u{Ah), or of pairs of these variables, as may be readily seen from (7).
We leave the detailed verification of this to the reader. Hence, if Kirchhoff's law holds
for some u, the convex function V(u) must have an absolute minimum for this particular u.

Remark. In the case (2c) of an exponential conductivity law, with the same exponent
a for all links in the network, the dissipation function D is proportional to the function V,
and therefore D can be used in place of V in the results of this section.

4. Existence theory for the Dirichlet problem. We shall now derive an existence
theorem for the Dirichlet problem which is adequate for most physical applications.
In order to avoid giving the impression that it is the "best possible", we shall preface
it by giving a much stronger result for the linear case.

In the linear case (2d), a given trial potential function, when used to construct i by
means of i{ak) = ck[u{AiW) — u(AfW)], for each link ak = Ailk)Afik) , will satisfy
Kirchhoff's node law (1); i.e., (see Sec. 3) will solve the Dirichlet problem, if and only if

22 eAtc*[M(-4»<it)) — u(A/(i,))] = 0, (8a)
k

for every Ah in N — dN. This gives a system of s linear equations in the s unknowns
u(Ah) = uh , which may be more compactly written thus

n

22CkiU{A,) = bk , h = 1, ••• ,s, (8)
f-1

where the numbers bh are known. The matrix of coefficients || chi || of (8), which is sym-
metric (as follows readily from (8a) and the definition of the incidence matrix II II)
will be called the conductivity matrix of the network. It is well known6 that for any
system like (8), existence and uniqueness are equivalent to each other, and also to the

6G. Birkhoff and S. MacLane [25, chap. X].
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condition that the determinant of the matrix of coefficients be different from zero.
This gives the following result7.

Theorem. If (2d) holds, the Dirichlet problem is solvable, for a given network N
(with at least one interior node and at least one boundary node) for arbitrary values,
if and only if det 11 cki 11 0. This condition is also necessary and sufficient for uniqueness.

We now see how special, in the linear case, is the condition (2a) requiring all con-
ductivities to be positive. If this condition holds, then all the diagonal elements chh
are positive, while

Chh ^ H I I, for h = 1, • • • , s,

with strict inequality holding if and only if the node Ah is linked directly to a boundary
node (which will certainly occur for at least one node, since neither N — dN nor dN is
empty, and the network is connected). It follows8 that, if, in addition the matrix || cHk ||
is not reducible to the form

P U
0 Q

by the same permutation of the order of the rows and columns, where the matrices
P, U, Q, 0 are all square matrices, and 0 consists only of zeros, then det || chk || 0.
However, it is easy to see, again using the theorem mentioned in footnote 8, that if all
the conductivities are positive, and the conductivity matrix of a connected network has
the "exceptional" form just mentioned, then its determinant is still not zero. For if
11 cAfc 11 is of this exceptional form then its determinant is the product of the determinants
of P and Q, each of which is again symmetric and "dominantly diagonal", and may be
further reduced, in the same way that the original conductivity matrix was reduced,
in case either of them is exceptional. (Notice that, in view of the symmetry of || chk ||,
it follows that the submatrix U must consist only of zeros.) Continuing this reduction
as far as possible until only non-exceptional symmetric matrices occur (only a finite
number of steps are possible) one finds that the det || chk || is the product of a finite
number of determinants, each corresponding to a "dominantly diagonal" matrix which
is not "exceptional", and that all elements not appearing in this product are zero. Since
the given network is connected, at least one node in each subnetwork associated with
these submatrices must be linked directly to a boundary node of the given network.
Hence, by the theorem mentioned in footnote 8, the determinant of each subnetwork is
not zero, and thus det 11 chk 11 is not zero either. It is clear that this class of non-singular,
dominantly diagonal symmetric matrices is but a very small subclass of the class of all
non-singular symmetric matrices.

The existence theorem which we shall now prove for the (possibly) non-linear case
corresponds, however, to the theorem (in the linear case) obtained from Theorem 2
upon making the superfluous additional assumption that the conductivity matrix
|| cki || is "dominantly diagonal" in the sense just described above.

'See C. Saltzer [27, p. 122], J. L. Synge [20, p. 127].
8See Theorem III of Olga Taussky [18, p. 673], For an application to electrical networks, see M.

Parodi [13].
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By Theorem 2, any local minimum of V(u) will provide a solution, in the non-linear
or linear case. However, if every Ck(Au) —* +<» as | Au | —» +00, then V(u) will be
bounded below everywhere; and be arbitrarily large9 outside any sufficiently large
bounded "cube" in (i^ , • • • , u.) space. Hence V(u) will have an absolute minimum
inside some such cube, by a theorem of Weierstrass on continuous functions. We conclude

Theorem 3. If (2b) holds, and if, for all k,

/ ck(x) dx = / ck(x) dx = + ro, (9)
Jo Jo

in the sense of improper Riemann integration, then the Dirichlet problem has a solution
for arbitrary boundary values.

Cokollary. If (2a) and (2b) both hold, then (9) may be replaced by the conditions

ck{x) > 0, for some x > 0, (9a)
and

ck(x) < 0, for some x < 0. (9b)

5. Neumann problem. The Neumann problem is dual to the Dirichlet problem, in
the sense that the r61es of u and i are interchanged. To make the duality more marked,
we note that, since any continuous, strictly increasing function y = ck(x) has a (unique)
continuous, strictly increasing inverse function x = rk(y), conditions (2a), (2b) are
self-dual. Accordingly, we shall replace (2) in Sec. 1 by

Aw* = rt[i'(a*)], (10)

and refer to the rk as resistance functions. The condition that there exists a single-valued
potential u(Ah), such that Auk — u{At) — u(At) whenever ak = AiAj , is evidently
Kirchhoff's circuit law

= 0, (11)
r

for any sequence T of oriented links forming a closed cycle (or circuit).
For a given influx v on dN, satisfying the consistency conditions (3'), the most

general current function i which satisfies Kirchhoff's circuit law (11) is obtained by
"adding", onto some fixed current function satisfying the same conditions, "cyclic"
currents /3i , • • ■ , j3t around closed cycles I\ , • • • , T, forming a basis for the closed
cycles of the network. This fact is easily seen in the case of a planar network (graph),
when the basic cycles may be taken as the (oriented) boundaries of the polygons into
which the network subdivides the plane, and one has r + 1 = n + t. The general case
is also classic10 (i.e., t = r — n + 1 for a connected graph).

Thus, once an initial current distribution satisfying (3') and (11) has been found,
each /? = (/Si , • • • , 18,) determines a unique current distribution on the set of links L,
satisfying (3') and (11), while (10) may be taken as defining Am. (We treat (10) as a
substitute for (2), recalling that (2) and (10) are equivalent if (2a) and (2b) hold.)

We now define Rk(i) = fo rk(y) dy, for each link ak , so that the derivative R'k(i) =
dRk/di = rk(i), and assume for simplicity that the rk(y) are continuous.

This follows from a modification of an argument of Duffin [17, p. 965] which uses in an essential
way the fact that the network is connected.

10Poincare [4], Veblen [7, p. 9], Ingram and Cramlet [12, p. 137], and Synge [20, p. 123].
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Theorem 2'. For given consistent values [see (3')] of vh on dN, the first variation
of the function

W(P) = (12)
L

vanishes identically if and only if the rk[i{ak)] satisfy Kirchhoff's circuit law (11).
Proof: By direct computation,

5W = T, R'k[i(ak)]Si(ak) = £ 5/3, Z rt[i(a*)], (13)
l b r,

where the last sum is taken over a basis B of the closed cycles of the network, which
consists of I\ , • • • , I\ . This last sum is zero for arbitrary 5/3 if and only if the individual
sum taken over each r, is zero, which is equivalent to (11).

Corollary. If (2a), (2b) hold, then Kirchhoff's circuit law (11) holds if and only if
T7(/3) has an absolute minimum.

The proof is similar to that of the corollary to Lemma 2, and may be omitted.
Remark. In the case (2c) of an exponential resistance law, with the same exponent

a for all links in the network, it follows (see Sec. 3) that the dissipation function D is
proportional to the function W, and therefore D can be used in place of W in the above
results. This is known in the linear case11.

Theorem 3'. The Neumann problem has a solution for any set of compatible bound-
ary influxes [see (3')], provided that (2b) holds and that

/ rk(y) dy = / rk(y) dy = +» . (14)
Jo Jo

The proof is identical with that of Theorem 3, and the analogue of the corollary to
Theorem 3 also follows similarly.

6. Mixed boundary value problem; relaxation methods; existence theorem. Without
striving for maximum generality, we shall prove an existence theorem which is adequate
for most applications. The method of proof to be employed is constructive, in that in
many concrete instances the performance of the "relaxation steps" used in the proof
can actually be used in order to construct numerically a solution to a network boundary
value problem.

Let us suppose that our boundary conditions are of Types I and II'. Since Kirch-
hoff's node law (1) really corresponds to a condition of Type II', with Fh(u) = 0, we
can reformulate our problem as that of satisfying a condition of Type II' at all those
nodes , • • • , Am where the potential u(Ah) is not prescribed; we shall denote this
set (supposed to be not empty) of nodes by M. Further, we shall suppose that the set of
nodes at which the potential is prescribed, which is N — M, contains at least one node.
It is for this class of boundary value problems that an existence theorem will be proved,
under the assumption that (2a) and (2b) hold and that

lim ck(x) = — oo ; lim ck{x) = + oo . (15)
x—*— 00 X—* + 00

Thus we shall exclude the case of "saturation currents".
(The requirement that the set N — M be non-empty, seemingly—but only seemingly

—excludes the Neumann problem from consideration. Because, granting, for the purposes

"W. Thomson (Lord Kelvin) [2], and J. C. Maxwell [3].
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of the present discussion, that an existence theorem has been proved for the above
mentioned class of mixed problems, then an existence theorem for the Neumann problem
readily follows from it. This can be seen by merely assigning arbitrarily the value of
the potential at a fixed node of the network, as an additional boundary condition,
besides the given Neumann conditions. By this obvious artifice, any Neumann problem
can be turned into a mixed problem of the class described above, and hence has a solution
for each arbitrarily assigned value of the potential at the chosen fixed node, i.e. a "one-
parameter" family of solutions. In view of this, the Neumann problem need not be
mentioned in the following discussion.)

Just as in Sec. 3, we can satisfy (2) by fiat for any choice of «i = u(Ai) , • • • , um =
u(Am), merely by defining i{ai) — c,(AUj) for each link a,- . We can then compute
vk — Si for each node Ah in M, and define the discrepancy (or residual) function

Sh = vh — Fk(uk), h = 1, • • • , m. (16)

An existence theorem clearly asserts that 8(u) = 0 for some u — {uy , • • • , um).
Lemma 4. The function 5 = T(u) is one-to-one and continuous.
Proof: The continuity of T follows from the fact that the functions ck are continuous

by (2b), and the functions Fh are also continuous, by (4). It remains to show that distinct
u determine distinct 5. This follows readily from Theorem 1, but we shall go over the
proof, to emphasize the r61e of the requirement that the set N — M, where the potential
values are assigned, is not empty. To this end, consider, as in (5) and (5+) that

D* = 2 (*» — i'NAUk — Au'k) ̂  0,
L

by (2a). On the other hand

D* = E {(t* - H) Z ^MAk) - M'(^„)]}
L N

= Z (."!> — vl>){u(Ah) — u'(Ah)],
N

= E ("A - v'h)[u(Ah) - u\Ak))
M

and if T(u) = 5 = 5' = T{u'), then

D* = £ [F„(M4) - F'(uh)][u{Ah) - u'{Ah)] is 0,
M

by (4). Hence D* — 0, and by Lemma 1, it follows that u — u' is a constant. But this
constant difference must be zero, since it is zero for each node in N — M, which is not
empty.

Now, still assuming (2a), (2b) and (15), we pass on to a relaxation method. We
shall consider the residuals12 54 of a variable trial function u(Ah), which are defined by
(16). We first prove four lemmas involving the "order" relation.

Lemma 5. As u(Ah) is increased, all other values of u being held fixed, 5h increases,
all "adjacent" dk decrease, and all other 5,- remain constant.

Proof: For if Ak is "adjacent" to Ak , that is, there is either a link AhAk or a link
AkAh in the network, then an increase in u(Ah) increases [by (2a)] either i(AhAk) or

"We shall conform to the terminology of R. V. Southwell [11], where possible.
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— i(AkAk), as the case may be; hence it increases vk , decreases vk , and leaves unchanged
V,- when Aj is not adjacent to A h . Also, by (4), an increase in uh = u(Ak) either decreases
or leaves unchanged Fk(uk), and leaves unchanged all remaining F,•(«,•), where A,- ^ Ah.

Lemma 6. Consider a node Ah , and suppose that the values of u at all adjacent
nodes Ak are increased, while the values of u at, Ah , and at all nodes not adjacent to
Ah are held fixed. Then Sk decreases, while 5k , where Ak is adjacent to Ah , increases.

The proof follows along similar lines to that of Lemma 5.
Now, consider &k [see (16)] as a function of the single real variable u(Ah), all the

other u(Ak) being kept constant. From (2b), (15), and (4) it follows that Sh is a strictly
increasing continuous function of u(Ak), which varies continuously from — °° to
as u(A,) does the same. Hence there is exactly one choice of u(Ah) which will make
5/,[w(4i)] = 0 ("liquidate the residual" at Ak), provided that all the other u(Ak) are
kept constant. We define (exact) point relaxation at each node Ah to consist of replacing
the value u(Ah) by this particular value which makes 8k vanish at Ah , all the other
values u(Ak), for Ak ^ Ak , being kept constant.

Lemma 7. Relaxation at a given node is isotone on trial solutions of the same problem
(i.e. it preserves order).

Proof: The proof is by contradiction. Suppose that u and u' are such that u(Ak)
u'(Ak) for all Ak in N, and let vh = v(Ak), and v'k = v'(Ah) denote, respectively, the
functional values obtained from u and u' by point relaxation at the node Ah . Suppose,
contrary to what we wish to prove, that vk < v'h . Now, starting with the "relaxed"
function uR (i.e. with the function whose value at each node Aj ^ Ah is u'(A,-), while
at Ak its value is v'k) one can proceed in two steps to the "relaxed" function uR , and
obtain a contradiction, as follows. First, replace the values of u' at all the nodes different
from Ak by the corresponding values of u at these nodes, leaving the functional value
unchanged at Ak itself, and denote the resulting "hybrid" function u'*. By Lemma 6,
and the definition of point relaxation, one has that

0 = bk{uk) ̂  &k{u'*). (17)

Secondly replace the value of u'* at Ah , which is v'h , by vk , and leave the values of u'*
at all nodes different from Ak unchanged. The resulting function is precisely the "relaxed"
function uR . Since, by assumption, vh < v'k , it follows from Lemma 5 that

«*(«'*) > Sk(uR). (18)

But a comparison of inequalities (17) and (18) then shows that Sh(uR) < 0, contradicting
the fact that, since vh was obtained by point relaxation of u at Ah , the number dk(uR)
must be zero. This completes the proof of Lemma 7.

In the proof of the following lemma and the theorem to follow we shall make use of
two more additional assumptions, one concerning the conductivity functions ck and
the other concerning the functions Fh of (4). For convenience we write them as follows:

For every k, one has c^O) = 0, (19)

For every function Fk which does not vanish identically, there is a number
Xi such that F{xi) g 0 and a number x2 such that F(x2) 0. (20)

[n view of (4), it follows from (20) that whenever Fk is not identically zero then it is
^ 0 for all sufficiently negative x and that it is iS 0 for all sufficiently positive x. As for
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(19), it certainly holds in the important special cases (2c) and (2d), and it means intui-
tively, that "if the potential is constant then there is no flow of current".

Lemma 8. Suppose that (19) and (20) hold, in addition to (2a), (2b) and (15).
Let u0 be an arbitrary trial function (i.e. having the prescribed values on AT — M).
Then there exist two other trial functions v0 and wa such that

«.(A0 ^ u0(Ak) g w0(Ak),
and

8k(v0) ^ 0 g Sk(w0), h = 1, • • • , m.

Proof: It will suffice to show how to construct the trial function v0 such that both

«o(4*) g u0(Ah) (21)
and

Sk(v0) ̂  0, (22)

for h = 1, • • • , m, since the construction of w0 is entirely analogous. The function v0
will be defined in the following manner:

- jC' f" ta M (23)
lu0(Ah), for Ah in N — M,

where C is a constant, which is to be chosen sufficiently negative so that the require-
ments (21) and (22) asked of v0 are met. First of all, if C g minv u0 then (21) clearly
holds. As for (22), notice that if Ah in M is not linked to any node olN — M, and Fh = 0,
then [by (19)] it follows from (23), for any choice of C in (23), that Sk(v0) = vk(v0) = 0,
and (22) holds; however, if Fk ^ 0, then still vk(v0) = 0, so that [by (20)] by choosing
C sufficiently negative it will be true that Sk(v0) = — Fk(v0) 0, and (22) will again
hold. It remains to consider the case when Ak in M is linked to at least one node in
N — M. From (3), in view of (19), it follows that, for any choice of C in (23), only the
links joining Ak to a node of N — M contribute essentially to the sum in vk(v0), and
from (2a), (2b), (4) it is seen that if C = v0(^L) is sufficiently negative, then Sh(v0) =
vk(vo) — Fk(v0) will be g 0, fulfilling (22). Thus, all in all, in order that v„ defined by
(23) fulfill the requirements (21), (22), one sees that C must satisfy a finite number of
conditions, all of which may be made to hold simultaneously, if only C is chosen suffi-
ciently negative. This completes the proof of Lemma 8.

We are now ready to prove our main result13.
Theohem 4. Suppose (2a), (2b), (15), (19), (20) hold. Let u0 be any initial trial

solution of a mixed network flow problem, and suppose ux , u2 , u3 , • • • are obtained by
successively "point-relaxing" the residuals of the initial trial solution u0 at an infinite
sequence of nodes of M, in such a way that each node Ah in M occurs infinitely often
in the sequence of nodes. Then the sequence of trial functions Mi , u2 , u3, • • • converges
to the solution z of the given problem, the uniqueness of which has already been estab-
lished in Theorem 1.

Proof: First, by Lemma 8, there exist trial functions v0 and w0 such that both

v0(Ak) ^ u0(Ak) g w0{Ak),
and

Sk(v0) ^ 0 ^ Sk(w0), h = 1, • • • , m.

13This generalizes directly a result of J. B. Diaz and R. C. Roberts [22].
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Let t>i , Mi , wx denote the functions obtained from v„ , ua , w0 , respectively, by point
relaxation at the first node of the preassigned sequence of nodes. By Lemma 7, the
initial sandwich order is preserved, i.e.

Vi(Ah) ^ u,{Ak) ^ wt(Ak), h = 1, ••• , m.

As a matter of fact, since

5„(y0) ̂  0 ^ b,{w0), h = 1, • • • , m,

it actually follows that (see Lemma 5)

i£ Wi(Aa) ^ u,(Ak) ^ Wi(Ah) 5S w0(Ah), h = 1, ••• , m

and that

Sk(v,) ^ 0 £ 5a(«^i) , h = 1, • • • , m.

Similar inequalities hold for any positive integer n, if we denote by v„,un,wn, respectively,
the functions arising from v0 , u0 , w0 , respectively, after successive point relaxation at
the first n nodes of the preassigned sequence of nodes. Namely, we have

y<>(^) = Vi(^4a) ^ ^ vn(Ah) g un(A„) ^ wn(Ah) ^ • ^24)

^ g w0(Ah),
and

Sk(tO ^ 0 ^ Sk(wn), h = 1, • • • , m.

Since, for each Ah in M, the sequence of numbers v0(Ah), vx{A^), ■ • • , vn(Ak), ■ • • is
non-decreasing and bounded above [e.g., by w0(^4J] it follows that the following limit
exists

= limyn(i4fc), h = 1, , to. (25)
«—♦<*>

For on — M we have that v(Ah) equals ua{_Ah), which is exactly the value each
function i\ has at Ah. Thus, to show that the function v is indeed a solution of the mixed
problem, it only remains to show that

5„(v) =0, h = 1, • • • , to. (26)

To do this, consider Ah in M. Since Ah occurs infinitely often in the preassigned sequence
of nodes employed in point relaxation, it follows that there is an infinite sequence of
positive integers nx < n2 < n3 ■ ■ • such that

^»(®«») = o, k — 1,2,3, •••.
But then from (25) and the continuity of 5 (see Lemma 4), Eq. (26) follows.

By proceeding in a similar manner with the non-increasing, bounded below sequence
of numbers w0(Ah), Wi{Ah), • • • , wn(Ah), • • • one obtains that the function w defined by

w(Ah) - limw„(A0, (27)
n—»co

for Ah in N, is also a solution of the mixed problem. The uniqueness Theorem 1 then
shows that v = w, the solution of the mixed problem and finally (24), (26), and (27)
then show that un also converges to the solution of the mixed problem.
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