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ON THE STABILITY OF THE SPHERICAL SHAPE OF A VAPOR CAVITY
IN A LIQUID*

BY

M. S. PLESSET and T. P. MITCHELL
California Institute of Technology

1. Introduction. It has been shown by G. I. Taylor [1] that a plane interface be-
tween two fluids of different densities in accelerated motion is stable or unstable ac-
cording as the acceleration is directed from the heavier to the lighter fluid, or conversely.
This stability analysis is limited to small amplitude perturbations of the plane interface;
and it is found that a small distortion of the interface begins to grow exponentially
with time in the unstable situation and to decrease exponentially in the stable situation.
While experimental observations agree well with the theory in the small amplitude
limit for which the theory is valid, it is known that there are significant deviations in
the rate of growth of distortions in the unstable case when their amplitudes become
appreciable [2].

It is of interest to consider the analogous stability problem for the case of a spherical
interface between two immiscible fluids of different densities in accelerated motion.
For perturbations in the spherical interface of small amplitude, it may be shown [3]
that the stability criterion deduced by Taylor for the plane case is subject to important
modifications.

The stability problem in the spherical case may be formulated as follows. A fluid of
density pi is contained within a sphere of radius R; a fluid of density p2 occupies the
region exterior to this sphere. The fluids are supposed to be immiscible, incompressible
and nonviscous. The equation of motion for the interface radius as a function of time,
R(t), is readily determined under the assumption that the initial and boundary con-
ditions are spherically symmetric. If the interface is distorted from the surface of a
sphere of radius R to a surface with radius vector of magnitude r, , then one may write

r. = R + 2 a»Y» , (1)
where F„ is a spherical harmonic of degree n and the an's are functions of the time to be
determined. The stability of the spherical interface may be established by considering
whether interface distortions of small amplitude grow or diminish. More precisely, it
is assumed that

| an(t) | « R(t),

and that terms of order higher than the first in an and dan/dt are negligible. In such a
linearized perturbation theory, the a„'s are independent of each other, and it may be
shown [3] that they satisfy the following differential equation

d2a„ 3 dRdan
W + RTt^t~Aa» = * (2)

with
_ [n{n — l)p2 — (n + 1 )(n + 2)pi\d2R/dtl — {n — 1 )n(n + l)(w + 2)e/R2

A ~ [nP2 + (» + l)p,]B ' W

where <j is the surface tension constant.
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The spherical stability problem has application to the behavior of growing or collaps-
ing gas bubbles in a liquid. Penney and Price [4] have carried out a numerical solution
of the stability equation (2) for n = 2 for the case of a pulsating gas bubble in water
with an internal pressure, p, , in the bubble given by

PiR3y — const.

and with a constant pressure;, p0 , in the liquid at a distance from the bubble. In their
computations surface tension is neglected. The numerical solution showed that the
distortion amplitude a2 is much larger when the bubble is near its minimum radius
than elsewhere. The problem to be considered here is a cavity for which the internal
pressure, p, , is constant, in a liquid at constant external pressure p0 . These are approxi-
mately the conditions in a vapor cavitation bubble in a liquid. An analytic solution for
the stability equation may be found under these conditions.

2. Solution of the stability problem. For a vapor cavity in a liquid, the vapor density
p! may be neglected in comparison with the liquid density p2 . The quantity A of Eq.
(3) then becomes

A = " (» " 1)(» + l)(n + 2) ^3 , (4)

where p = p2 is the liquid density. The equation of motion of the undisturbed interface
[3] is

cfR 3 (dRY _ p. - p„ - 2<x/R
dt2 + 2 \dt ) P (5)

Equation (5) may also be written as

f, Hf)']-2*1 f[p'~VWK]
which integrates, when p, — p0 is a constant, to give

*p[*(£)2 - fiofjf2)2] = y (P, - Po)GR3 - Rl) - 4MR2 - R2o), (6)

where R0 is the cavity radius and dR0/dt is its radial velocity at t — t0 . This integral
of Eq. (5) is to be recognized as the energy integral of the system.

The general features of the asymptotic behavior of the distortion amplitude a„ may
be made evident in a straightforward way. For the case of an expanding bubble, Eq.
(6) gives

(dR\2 2 P _

with P = Pi — p0 > 0, and it then follows from Eqs. (5) and (2) that

an —» const., R —» oo. (8)

For the case of a collapsing bubble, it is convenient to transform Eq. (2) by the sub-
stitution

«■ - (I)'"6- e»
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into

Ip5 - G(t)bn = 0 (10)
with

nr, 3 d fl dB"| , 9 fl dfll2 , .g(,)-2sus"J+jLbs-J +a
3 1 (dR\' , (n + 1/2),i'R , ,"I wKdil+S—He ~ln - 1)<n +1)(n + 2) w (ll)

From Eq. (6), one has

where p = p0 — p{ > 0 for this case. The radial acceleration, d2R/dt2, is determined
by Eq. (5); and the function G(t) is found to be

CM ~ -f | [(f)' + | + |;]. 8 -> o, (13)
except for smaller terms. It is evident that

G(i) ~ , (14)

where c is a real constant. One may now write a W.K.B. approximation to the solution
of Eq. (10) for small R in the form

K ~ [G(0]_1/1 exp |± f [G(t')]1/2 di'j ~ R5/4 exp |±icnl/2 J' R~s/2 dt'j. (15)

The distortion amplitude an is then given by

a„ ~ R~Wi exp |±tcreI/2 J' R~sn R -» 0; (16)

so that a„ increases like i?~1/4 in amplitude and oscillates with increasing frequency as
R —* 0. This behavior has been found by Birkhoff [5] by a different procedure. It is of
interest that the instability found by Birkhoff near R = 0 is qualitatively unaffected
by surface tension.

The question remains over what range of R is the linearized perturbation theory
for the distortion amplitude*, a, valid or consistent. The following problem will therefore
be solved. A spherical cavity with radius R0 at t = 0 expands, or collapses, from rest,
dRo/dt = 0, under a constant pressure difference; at t = 0, the cavity is supposed to
have a distortion of small amplitude a0 , and the subsequent behavior of a for any R
is to be determined. Complete solutions for this problem are readily found when surface
tension is neglected and these solutions are given first. The effects of surface tension will
then be illustrated by some special solutions.

(i) Expanding cavity, no surface tension

*The subscript n for the distortion amplitude will be omitted in the following.
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With no surface tension, the stability equation to be solved simplifies to

d2a 3 dR da (n - 1) d2R
dt2 R dt dt R dt2 ° ' (

one finds from Eq. (6) that

[f ]' -1 [•" I]-
where P = — p0 > 0; and from Eq. (5) that

$-?£• <->
If the independent variable in Eq. (17) is changed from t to the volume ratio

R3
0 < x < 1; (20)

R3
there results

x(l _ x\ . |~I _ 5 1 da _ (n - 1)
X( ' dx2 + |_3 6 J dx 6 (21)

Equation (21) will be recognized as the differential equation for the hypergeometric
function F(a, /3; y; x) where the parameters have the values

-1 + i(24n - 25)1/2 1
12 12 + l8'

-1 - i(24w - 25)1/2
12

1

(22)

7 = 3*

It is convenient to take the general solution of Eq. (21) in the form [6]

a = AF(a, 0; 1/2; 1 - x) + B(l - x)U2F(-a + 1/3, -/3 + 1/3; 3/2; 1 - x) (23)

where A and B are constants to be fixed by the initial conditions. If a = a0 at t = 0 or
R — R0 , then one has

A = a0 (24)

from Eq. (23). Similarly, if the initial velocity amplitude for the distortion is v0 , then

[da\ .. \ da dx\
g?U<-o x™ Ldx dtj'

= 3B[ 2P"|I/2

2R0 L3pJ ' (25)
which fixes the constant B. The quantity (2P/3p)I/2 is a characteristic velocity and
R0 is a characteristic length for the system, and it is convenient to describe the initial
velocity amplitude in terms of the length

lo = (2P/3p)1/2 ' (26)
and Eq. (25) becomes

B = 2Z0/3. (27)
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The limiting value of a as R —*oo t or x —»0, is readily determined from Eq. (23). One has

«(E - a. - T1/'r(2/3)[| r(1/2°0_ a) ,, + 3 | r(7/6\ „) |-]

so that for large n

| ir"I/2elSr(2/3)^ao5_1/6 + | 5"7/8], (28)

where from Eq. (22)
. (24n - 25)1/2
5 = 12

Figure 1 shows the variation of a/a0 with R0/R for various values of n for the case in
which the initial velocity amplitude is zero, l0 = 0; Figure 2 shows the variation of a/a0
for the case in which the initial velocity amplitude is different from zero. Of greater
significance is the ratio of the distortion amplitude a to the mean bubble radius R; the

R«/R

Fig. 1. The ratio of the distortion amplitude a to its initial value a0 is shown for an expanding vapor
cavity as a function of Ra/R where Ro is the initial cavity radius and R its radius at later times. The
distortion of the spherical interface is a,,Y„ where Y„ is a spherical harmonic of order n. The initial

velocity of the distortion is zero.

0.4 0.6
R./R

Fig. 2. The distortion amplitude is shown as a function of cavity radius for a non-zero initial distortion
velocity.
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behavior of (a/a„) (R0/R) is shown as a function of R0/R in Fig. 3 for the case in which
the initial velocity amplitude is zero, and in Fig. 4 for the case in which the initial velocity
amplitude is different from zero.

Fig. 3. The ratio of the distortion amplitude a to the mean cavity radius R (in units of a0/R0) is shown
as a function of Ro/R for the case shown in Fig. 1.

0.4 06
R./R

Fig. 4. The ratio of the distortion amplitude a to the mean cavity radius R (in units of Oo/fio) is shown
as a function of R0/R when the initial distortion amplitude velocity is non-zero.

(ii) Collapsing cavity-, no surface tension
Equation (21) is also applicable to this case. It is convenient, however, to write the

solution in the form [6]

a = Ax~"F(a, a + 2/3; 1/2; 1 - 1/x)

+ Bx"( 1 - 1/xY/2F(-p + 1/3, + 1; 3/2; 1 - 1/x), 1 < x < ® . (29)

Equation (18) is written in the form

[ilLdt J 3p LR3 J'
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where now p = p„ — p, > 0. The constants A and B are found as in the previous case in
terms of the initial distortion amplitude a0 and the initial velocity amplitude va :

A = a0 ;

r> 2 Rn ,
B ~ 3 "° (2p/3 p)1/2 " 3 lo '

The solution may, of course, be written in a variety of forms. In place of Eq. (29) one
may write, for example,

a = A'yaF(f*, a + 2/3; 2a + 7/6; y)

+ B'y~a~UiF(—a + 1/2, -a - 1/6; -2a + 5/6; ?/), (30)
where now

y = l = %> 0 ̂  y £ L (31)CC /l0

A' and 5' are linear combinations of a„ and i0 which will not be written explicitly here.
From Eq. (30), one finds in the neighborhood of y = 0 that

a - iV,/12t" + B'y~l/l2~iS,

or
a ~ const X R~l/*, (32)

which is the singularity noted by Birkhoff.
The variation of the distortion amplitude with mean bubble radius is shown in Fig.

5 for n = 3 and in Fig. 6 for n = 6. The quantity of significance is the ratio of a to R;
therefore, the variation of (a/a0) (R0/R) with R/R0 is shown in Fig. 7 for n — 3 and in
Fig. 8 for n = 6.

Fig. 5. The ratio of tha distortion amplitude a to its initial value ao is shown for a collapsing vapor
cavity as a function of R/R0 . The case shown is for a distortion described by a spherical harmonic of

order n = 3.
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Fig. 6. The distortion amplitude is shown as a function of cavity radius for the case n = 6.

Fig. 7. The ratio of the distortion amplitude a to the mean cavity radius R (in units of oo/iJo) is
shown as a function of R/Ra for n — 3.

(iii) Expanding cavity with surface tension
For a bubble expanding from rest, dR0/dt = 0, one has from Eq. (6), if surface tension

is included,

[fMfMMM].
where P = p, — p0 > 0. The radial acceleration is determined by the relation

d*R 3 fdR ]2 _ P - 2a/R
dt2 + 2 \_dt J p

If the stability equation (2) is written in terms of the independent variable

2 = f (34)
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Fig. 8. The ratio of the distortion amplitude a to the mean cavity radius R (in units of ao/Ro) is
shown as a function of R/Ro for n = 6.

it becomes

da
dz,{!-«,+<*- § -1 -1, -1 (f - !>■}:

- (» - 1){| [!-(» + 1)(» 4- 2)] + (l - - 0, (35)
where

/2oP (36)
so that k is the ratio of the initial value of the surface tension to the static pressure
difference between the inside of the bubble and the liquid. Equation (35) has a neat
solution for the special value of k = 2/3 in which case it reduces to the hypergeometric
differential equation. This value of k is reasonable for vapor bubbles growing in super-
heated water where it is effectively slightly smaller than unity [7]. A convenient form
for the solution is

a = AF(a, p; 1/2; 1 - z) + B(1 - z)U2F(a + 1/2, 0 + 1/2; 3/2; 1 - z) (37)
where now

3 , (9 + 16AQ'/2
a = h a ; (38a)

«--f-; (38b,
and

N = (n2 + 3n+ 1). (39)

If a0 is the initial distortion amplitude and v0 the initial distortion velocity amplitude,
then one finds

A = a0 ,
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and
B — 2l0 ,

f where
7 _ Ro
0 (2P/3p)l/2 V° '

The variation of a/a0 with R0/R when k = 2/3 is shown in Fig. 9 for n = 2 and 3.
In Fig. 10, the variation of (a/a0) (R0/R) with R0/R is shown for these same values of n.

Fig. 9. The distortion amplitude a relative to its initial value ao is shown for an expanding cavity as
a function of Ro/R for the case in which the effect of surface tension is included. For n = 6 the curve

with lo/ao = 1 is not shown since it lies quite close to the curve lo/ao = 0.

Fig. 10. The ratio of the distortion amplitude a to the mean cavity radius (in units of ao/Ro) is shown
as a function of Ro/R for the case in which the effect of surface tension is included. For n = 6 the curves

lo/ao = 1 and lo/ao = 0 are very near each other.
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When these curves are compared with Figs. 1 and 2, or Figs. 3 and 4, the stabilizing
effect of surface tension is evident. It is also of interest to observe that, when surface
tension is included, a/a0 changes sign as R increases.

(iv) Cavity collapse under surface tension alone
An additional case of special analytic simplicity occurs for p, = p0 so that the cavity

collapses under the influence of surface tension alone. If the independent variable in
the stability equation for a is changed from t to the area ratio

u = fs , (40)
Ilq

the solution of the resulting differential equation is readily found to be

a = um[AF{a, p; 1/2; 1 - u) + B(1 - u)1/2F(a + 1/2, 0 + 1/2; 3/2; 1 - «)], (41)

where m has the value

« = -1+^4n-25)"■ > (42)

and F is the hypergeometric function with parameters a and /3 determined by the
relations

at3 = f ~ (n2 +3n +4);

a + P = 2m +

If the initial distortion amplitude is a0 and the initial distortion velocity amplitude is
v o, then

A = a0 ,
and

B = L0 ,
where

T Ro
Lo ~ Vo (2<r/pR0)1/2'

It is evident from Eq. (41) that

a —> const X R~I/4 as R —> 0.

3. Conclusion. For an expanding vapor cavity, an initially spherical shape is stable
in the sense that the deformation amplitude a remains small compared with R if its
initial value a0 is small compared with the initial cavity radius R0 . The consistency
and applicability of the linearized perturbation theory for the distortion amplitude is
thus demonstrated. These conclusions from the linearized theory must be qualified for
the case in which surface tension is negligible. As is shown graphically in Figs. 3 and 4,
a/R as a function of R0/R has a maximum which increases slowly with n, the order of
the spherical harmonic. It follows, therefore, when surface tension is unimportant, that
needlelike irregularities in the spherical interface may grow to significant amplitudes.
The present linearized theory is inadequate to follow the development of these high
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order distortions of the interface. This instability for large n disappears when surface
tension is of significance so that no such restriction need be imposed on the applicability
of the linearized theory in this case.

For a collapsing vapor cavity, on the other hand, the perturbation theory is valid
provided the distortion amplitude is not followed to small cavity radii. If R0 is the
initial radius of the spherical cavity, then the distortion amplitudes remain small so
long as 1 > R/R0 0.2 where the lower limit is, of course, approximate. The linearized
theory is thus applicable over an interesting and important range of cavity radius. As
R —» 0, the distortion amplitudes oscillate in sign with increasing frequency and increase
in magnitude like R~1/*. This increase in distortion amplitude as R~l/i is found with
and without surface tension. It may be remarked that the linearized perturbation theory
for the distortion amplitudes breaks down in a range of radii near that for which the
present model of the vapor cavity becomes invalid. It is known [8] that the vapor pressure
within a collapsing vapor cavity, such as is encountered in cavitating flow, begins to
rise very rapidly as R/R0 becomes smaller than approximately 0.1.
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