
27

THE STABILITY OF VISCOUS FLOW BETWEEN ROTATING CYLINDERS*
BT

H. STEINMAN
Yerkes Observatory, University of Chicago

Abstract. In this paper Chandrasekhar's method of solving the characteristic
value problem in the theory of the stability of viscous flow between rotating cylinders is
carried to a higher approximation. A . comparison between the results of the various
calculations among themselves and with the experiments confirms the greater feasibility
of the present method.

I. Introduction. Recently S. Chandrasekhar (1954) [1] has investigated the problem
of the stability of viscous flow between two concentric rotating cylinders. He employed a
modified and more general method than had previously been used. The problem was
first studied extensively by G. I. Taylor (1923). Later D. Meksyn (1946) expanded the
theoretical treatment to cover a different range of values for the ratio of angular velocities.
The significance of Chandrasekhar's method lies in its relative simplicity and its ability
to treat the widest range of values for the relevant parameters. This paper is an extension
of Chandrasekhar's work to obtain the solution of the problem correct to the second
order in y/d, where y is the distance of a point from the inner cylinder and d is the differ-
ence in the radii of the cylinders.

The stationary solution of the hydrodynamical equations appropriate to the problem
on hand is

V(r) = + f , (1)
where V(r) is the rotational velocity at a distance r from the axis of rotation; A and B
are two constants related to the angular velocities Hi and with which the cylinders
of radii Rl and R2 are rotated by

, _ 1 - nR\/R\ _ R]( 1 - „)
1 — R2/R2 B — Sii ^ jj£2 , (2)

n — Qz/(3)
and

is the ratio of the angular velocities.
By considering a symmetric perturbation of solution (1) by a periodic disturbance

in the direction parallel to the axis of rotation with a wave length \, a characteristic
value problem in a differential equation of order six is obtained (see Chandrasekhar,
loc. cit., Eq. (4)). When the difference in radii of the two cylinders is small compared to
their mean, we may, to the first order in y/d, replace A + B/r2 by

4 + B/r2 = 0,[1 - (1 - m)*L (4)
where

{ = y/d = (5)
xV 2 JX>\
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This is the approximation on which both Meksyn and Chandrasekhar have solved the
characteristic value problem. To the second order in y/d'we have instead

A + By = n.[i - (1 - „){i + fC\ifil)}£ +1 a - ?]; (6)

and we shall write this expression in the form

A + B/r2 = ftjl + + /3£2], (7)
where

. r 3 (r, - sola L 2 J-
j9 = | (1 - „) ~fil) , (8)

Ai = 1 + a + 0.

With A + B/r2 given by Eq. (6) the differential equation governing the problem
is (see Chandrasekhar, Eq. (10))

(.D2 - a2fv = -a2T( 1 + «| + ££>, (9)
where

D = X = a(R2 — /?,)
and

T = -4A"'d (10)

is the Taylor number. (In Eq. (10) v is the kinematic viscosity.) The six boundary
conditions with respect to which Eq. (9) must be solved are

v = (D2 — a2)v = D(D2 — a2)v = 0 at £ = 0 and ( = 1. (11)

Equation (9) together with the boundary conditions (11) determine T for any assigned a2.
The critical Taylor number Tc , at which instability sets in is then the minimum value
of T as a function of a2.

II. The revised method. Chandrasekhar's method of solving the basic characteristic
value problem consists in representing Eq. (9) as a pair of differential equations, one of
order four and the other of order two and in arranging that the boundary conditions
split in the same way; the fourth order equation together with the boundary conditions
which go with it is then solved exactly. Thus, with the same substitutions as Chandra-
sekhar (loc. cit., Eqs. (16)-(24)), we reduce the characteristic value problem to solving
the pair of equations

(.D2 - a2)2W = (1 + «£ + (12)
and

(If - a2)* = —a2TW, (13)

together with the boundary conditions

W - DW = 0, ^ = 0 at f = 0 and £ = 1. (14)

We next expand ^ as a sine series of the form
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oo

^ C, sin mr£ (15)
ri — 1

thus satisfying the boundary conditions, ^ = 0 at £ = 0 and 1. With this expansion
for ^ Eq. (12) becomes

0D2 - ayw = (1 + at + tf) £} Cm sin mr£, (16)
m — 1

and this equation is solved exactly to satisfy the remaining four boundary conditions
on W.

The general solution of Eq. (16) can be written in the form

W = ^ t—:—sr cosh a£ + B[m) sinh a£ + A2m)£ cosh a£
»-i (m 7r a ) I

+ B2m,£ sinh a£ + (v + <*£ + /3f) sin mir£

+ S (a + 2^) cos (17)
1Tl 7T -J- CL *

where A,™ , B,™ , vl2m and B ™ are constants of integrations and

4/3(a2 - 5mVj + (mV + a2)2
" ~ (mV + a2)2 '

The conditions that IF = DW = 0 at £ = 0 and £ = 1 yield:

^(m)   4mira
mV + a '

aB[m) + A'2m) -- — it) -\ 2 2^,—sjmir,
\ m 7r + a /m 7r +

cosh a + Bim) sinh a + cosh a + B(2m) sinh a

sinh 0 + B[m)a cosh a + ^"'(cosh a + a sinh a)

-f- Bj™'(sinh a a cosh a) = (—l)m+1(a 0 -(- 77 -}- 22^. s)wnr.
\ rrnr -}- a J

The solution of these equations is:

. (m) _ 4mva
1 r2 + a2 '

£(»•> = _|_ (gjjjh a _(_ a (.Qg}) _ (gjnjj 0)^j;})

{(sinh2 a)ai + (a sinh a + a cosh a)^'m — (a sinh 0)7^,),

B2m) = {(sinh a cosh a — a)al + (a sinh a)/3^ — (a cosh a — sinh 0)7^},

(19)

(20)
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where

A = sinh2 a — a2,

80
~ mV + a2 +

P: = -2-1^—2 f(-l)m+1(l + -) + cosh al, (21)
m t + a \_ \ a / J

7m = (— l)m+1(a + 0 + «m) + 2 2 , 2 (<* sillh d) .
Tfl 7T -p a

With SF and W given by Eqs. (15) and (17), Eq. (13) becomes

Cn(nV + a2) sin nir£ = Ta2 ^ , 2 f"!—2^2 ■{ Ajm) cosh a£
«—1 m_i (m x + a )

_l_ sinh -|- A£m>{ cosh £ sinh cl£

+ (?) + a£ + /3J2) sin jnir£ + —22, 2 (« + 2/3$) cos mir£f. (22)m ir + a J

Multiplying this last equation by sin mir£ and integrating over the range £ = 0 to £ = 1,
we obtain

with

and

[1 + (-1)"+1 cosha]^™' + [(-l)n+1 sinh aJBi"0

+ (— 1)" I cosh a 2 fa.—2 sinh a Ll^"'L n ir + a J

+ (-1)"+1 sinh a - —2 (1 + (-1)"+1 cosh a) LB,"'}L nir + a J J

+ ax„,m + /3?/n.m + I 5n.m - | (nV + a2)3 = 0, (23)

= C„(mV + a2)"2, (24)

4 2/».» 6 4„V2 nV + a2 ' if n - m;

if » * « (25)x = 0 v = -4nm r - - 1
2/n " n2 - m1 LAn2 - m2) mV + a2J'

n + m even;

4 nm T 1 2"| .. n 9^ m
%n,m — Vn.m — 2 „2 I 2/ 2 2\ 2 2 i 2 » Hn — m \_ir (n — m) mir + a J .n + m odd.

Equation (23) represents a system of linear homogeneous equations. It is the vanishing
of the determinant of this system that determines T for any assigned a2.

III. Numerical results. The equation determining T can be written as
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nv + a2 '[1 + (-1) cosh a\A[ + [(-1)"+1 sinh a)B\"

+ (—1)*+I cosh a —5 sinh aL n ir + a J

+ [(-1)"+1 sinh a - 2 22° 2 (1 + (-1)"+1 cosh a)!#"'}L n ir + a J J

+ OlXn.n. + 02/n.m + | ^ (^V + 0*)" = 0. (26)

In solving the infinite determinantal equation (26), the determinant was terminated
after three rows and columns. For a between —1.00 and —2.00 this seemed justified.
For a < —2.00, the calculations indicate that a higher approximation, by terminating

TABLE 1
Cylinder ratios and values of a with their corresponding f) and n.

C&86 Ri/Rx d « Rt — R\ a p fi

4.0351 — = 1 345 1.035 - .75 . 2557 . 5058
o. 00

I 1.345 1.035 -1.0 . 3410 . 3410
I 1.345 1.035 -1.5 . 5115 . 0115

4 035II - 1.062 . 235 - .75 . 0636 . 3136
3.80

II 1.062 . 235 -1.0 . 0848 . 0848
II 1.062 . 235 -1.5 .1272 -.3727

4.035III    1.137 . 485 - .75 .1276 . 3775
3.55

III 1.137 . 485 -1.0 .1700 .1700
III 1.137 . 485 -1.5 . 2551 -.2449

the determinant after the fourth row and column, would be necessary. However, for the
cases computed the convergence is fairly rapid as will be seen from Table 2.

In the present calculations, three values of a were chosen which correspond to the
experimental cases studied by Taylor; these cases are denoted by I, II and III in the

TABLE 2
Taylor numbers for assigned values of a, a and /S.

Case o a 0 Ti T, T, T,/T2

I 3.12 - .75 .2557 2464.84 2462.38 2453.04 .9962
3.12 - .75 .0636 2668.86 2662.94 2652.28 .9960
3.12 - .75 .1276 2597.24 2592.75 2582.54 .9961
3.12 -1.0 . 3410 2885.15 2878.25 2867.97 . 9964
3.12 -1.0 . 0848 3276.10 3256.78 3244.32 . 9962
3.12 -1.0 .1700 3134.83 3120.86 3109.20 .9963
3.20 -1.5 . 5115 4383.32 4328.23 4316.76 . 9973
3.20 -1.5 .1272 6018.53 5761.04 5747.24 . 9976
3.20 -1.5 . 2115 5353.70 5198.56 5181.98 . 9968
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subsequent work. For these three values of a, Eq. (8) leads to three values of /3 and m-
Case II gives the smallest separation of the cylinders and hence should be approximated
best by the theory. Case I is for the widest separation of the cylinders.

Table 1 gives the ratio for each case, the value of d and the three values of a with
their corresponding /3 and n-

Table 2 lists the Taylor numbers calculated for the nine values of /3. Here the sub-
script on T indicates the order of the determinant which was made equal to zero in the
computation of Te . The final column gives the ratio of Tt to T2 and provides a measure
of the convergence of the method.

The critical values of a for these cases agree exactly with those used in the first
approximation of y/d. Therefore it was possible to use some of Miss Elbert's com-
putations. This was accomplished by writing the constants of integration in the forms

/<('»)_ A <m>
-Al — ! t

B<-> = B\? + ^ {(a + (-1)"+1 cosh a) 2 28, ,
^ TTl IT ~\~ CL

+ {a — (—1)™+1 sinh a) -ya2 2 ~ (—1)™+1 sinh a
ylTl 7T d )

Aim) = Atf - ^ <! (sinh2 a + (-l)m+V cosh a)A I w I \ ■*■/ vvwu z Z I ZA I mir + a (27)

+ (sinh2 a — (—l)m+Iasinh a) 4/a2 2 — (—l)m+1asinh a
\iu 7r t o J

i(m) _ R(m) I mir ft J / • 1 „ i   I / + 1B2 = B2" -1—— |(sinh a cosh a — a + ( — l)m+l sinh a

t i\»+i.. .. 1- -s( 8 , 4(a2 — 5raV)\
( 1) a cosh a)( 2 2 2 -|- , 2 2 , 2\2 )

\7?1 7T ~T~ (^771 7T -p CL ) /

+ (—l)m+1a2sinh a(—nri—2) — (—1)"+I(a cosh a — sinh a)k
\1U 7T T a / J

where the subscript / denotes the constants from the first order calculation. Obviously
the corresponding value of n varies. When a has the value —2.00 or smaller the critical
value of a no longer agrees with that found in the first approximation but rather appears
to be consistently smaller.

A comparison of the values derived in this paper with those obtained by both Taylor
and Chandrasekhar is made in Table 3. The experimental results are given in units
of Oi/v with possible deviations of one or two per cent in the range considered. Equation
(28) was used to convert the computed Taylor numbers to the unit of measure Sli/v;

%V _ -Td - Ri/m
/ 4d\\ - nRl/Rl) { )

In this table the first column lists the case; the second, the value of n; and the last four
columns the values of 12,/f from Chandrasekhar's first order calculation, from the
nearest second order calculation, and from Taylor's theoretical work and lastly from
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TABLE 3
Comparison of values of Hi/v derived from the first and second order calculations using Chandrasek-

har's method, from Taylor's theoretical work and from Taylor's experiments.

Case fi Sil/vfirst ^l/Paeeond S2l/^Taylor ^1 / ^experiment

I .5058 68.6 71.3 77.4 74.2
I .3410 34.2 36.3 36.6 39.4
I .0115 27.3 31.0 27.8 30.5
II .3136 204.9 207.5 207.2 203.0
II .0848 190.6 194.0 193.9 193.8
II -.3727 197.2 206.0 203.7 212.2
III .3775 79.9 81.7 81.5 86.8
III .1700 70.2 72.6 72.8 74.6
III -.2449 66.8 72.2 71.6 73.1

Taylor's experiments. Both the Taylor values and the first order values had to be inter-
polated.

It is evident from Table 3 that in all cases the second order calculation gives a
value that is larger and closer to the experimental value than the first order calculation.
It is also true that for the particular cases considered the second order value is more
often nearer to the experimental values than is Taylor's value. As a —* — <» the Taylor
theoretical values will deviate more and more from the experimental values. It seems
that a third order calculation would add a correction of the right magnitude. However,
this would probably require the inclusion of the second order terms in /i.

The author is indebted to Dr. S. Chandrasekhar for suggesting this problem and
for his valuable advice. Thanks are also extended to Dr. Chandrasekhar and Miss
Donna Elbert for the use of their first order computations.
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