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ON DIFFUSIVE CONVECTION IN TUBES*
By G. F. CARRIER (Harvard University)

1. Introduction. There is a group of experiments (as exemplified by the con-
figuration of Fig. 1) in which one determines the time dependent solute content of a

y

t

Fig. 1. The solute is convected into the tube at y = 0, the
entrance condition being s = so + cos Ui.

fluid by continuously collecting the fluid through a long tube (length/radius « 1) and
appropriately testing samples so collected for solute content. The interpretative question
which arises is: "What is the relationship between the solute concentration at the source
and that at the tube exit?" The answer to this question is found here for one range1 of
values of the important parameters. The results are of interest in that the following
unexpected2 conclusion is reached. The attenuation in the solute concentration from
source to tube exit can be smaller for a solute with a high diffusivity than for one with a
smaller (or zero) diffusivity. That is, the diffusivity improves the response of the "instru-
ment" over the response that would be observed were the process purely convective.

2. Analysis of the problem. The solute concentration3 of the fluid in the tube is

•Received April 23, 1955.
'This range is encountered in experimentation concerning the salinity of ground water in permeable

islands.
'I.e., unexpected by the author.
'Actually s is the difference between the gross fluctuating concentration and the average concentra-

tion.
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denoted by s(r, y, t) and its distribution is governed by convection and diffusion ac-
cording to the law

s, + w0(l — r2)s„ = vAs. (2.1)

We assume here that the flow rate is not time dependent and that the Reynolds number
is low (in the problem of footnote 1, pu„r0/fi = Re = 0 [100]) so that the flow is laminar.
In the foregoing v is the diffusivity, u0 the maximum velocity, y and r r0 are the cylindrical
coordinates4 as indicated in Fig. 1, and A is the Laplace operator. The initial condition
states that5

s(r, 0, t) = exp (iilt).

We wish to find the ratio of the solute discharge at y — L to the intake at y = 0. That
is, we wish to compute

R = J r( 1 — r2)s(r, L, t) dr j j r(l — r2)s(r, 0, t) dr. (2.2)'

It is clear that s(r, y, t) can be represented in the form

s(r, y, t) = E F„fn(f) exp (ittt - (3„y) (2.3)
n = 0

and that this will be an "efficient" representation if Re(/8„) increases so rapidly with n
that | exp (— (iNL) | « | exp (— /30L) | for moderately small N. As we shall see, there
is a large range of the parameter co = Qrl/v for which the foregoing is true and the use
of Eq. (2.3) is therefore to be adopted. If, then, we use Eq. (2.3) and introduce the
notation an = rl uQfin/v, Eq. (2.1) becomes

r-\rf'ny - (to - an[l - r2] - «**)/„ = 0, (2.4)

where e = v2juar\. It can be anticipated that the results of interest (i.e., the not too
strongly attenuated signal cases) will occur for those situations where e <3C 1 and it can
also be anticipated that a0 will be of order w with interest centering on the case co = 0(1).
For such cases, it is clear that the term in an is of negligible importance and may be
disregarded. (In the ground-water problem alluded to previously co was about 2 and e
was 10~9.) On this basis we omit the e term with the understanding that its importance
for any case can be checked when the answers are in by computing — an(l — r2)].
Consequently, we deal with the equation

r-\rf')' - (iu - a[l - r2])/ = 0, (2.5)

where we have omitted subscripts. The boundary conditions require that/'(0) = /'(1) = 0
since there must be no diffusion across the tube wall and since the origin is not a singular
point.

One way to obtain an accurate representation of the solutions of Eq. (2.5) for, say,
to < 5, is to expand / in the form

f(r) = E <pv(f)c',
(2.6>

with aU) = E av°v,

% is the radius of the tube and r the dimensionless coordinate.
6We omit writing Re (real part of) for brevity.
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where <r = iu. We can anticipate that the "lowest" eigenfunction will have associated
with it an a(<r) such that a(0) = 0. (Note that for a — 0; / = 1 and a = 0). Thus, the
successive <pp obey the equations

r \r<p'v)' = fo,_, — (av<p0 + ap_,<pt + ••• + di<p„_i)(l — r2)]. (2.7)

Equations (2.7) can be integrated successively starting with p = 0 and proceeding
monotonically to larger p. In each integration the constants of integration can be
arbitrarily taken to be zero. (Other choices which do not violate ^(0) = 0 merely
multiply the final result by a numerical factor.) The number a„ is chosen so that the
boundary condition <p£( 1) = 0 is satisfied. This procedure leads to the result

/„ = 1 + <t(x*/8 - x*/4) + <j\x2/96 + 5x7384 - 5x7288 + *7256) + • • • (2.8)
«0 = 2<r - <r2/24 + *7960 + • ■ •

It can be seen that the convergence is excellent for moderate values of | a |.
An alternative method of deducing Eq. (2.8) is to form the variational problem

5 f ifr + W ~ «(1 - r2)]/2}r dr = 0. (2.9)
Jo

If we use the usual Rayleigh-Ritz procedure taking / to be a polynomial ^ an»"2n for
0 < n < 3, and impose the proper boundary condition (/,(1) = 0), we obtain a character-
istic equation which is cubic in a and which, in particular, gives a0 = 2<r — o-2/24 + 0(cr3)
again. It also gives ~ 26 + O(o-) and a2 ~ 160. The value for a2 is certainly not to be
trusted, but the value for a, is an excellent estimate for moderate a (say | <r | < 5). If
we adopt 26 as the order of magnitude of ax , then, we note that (&L — (30L), which is
a measure of the relative importance of f0 and fi , will obey the following inequality:
Re (/?i — p0)L < A when u2 < 24(26 — A r20u0/vL). This defines, in a rough way, the
range of utility of this analysis. The foregoing variational procedure also gives an estimate
for the eigenfunction /j(r) which we shall not bother to record.

The solute distribution s(r, y, t) can now be determined by noting that the "Fourier
coefficients," F„, of Eq. (2.3) are those associated with the expansion

E FJJr) = 1.
n"=»0

The orthogonality relation among the /„(r) is

[ f.(r)fm(r)( 1 - r2)r dr = 0,
Jo

for m n

so that Fn becomes

= fo ~~ dr / f0 ~ dr- (2-10)

For | cr | < 5 we again can show that | F0 \ is close to unity (we shall give an example
soon) and6 | | < .01. It is clear that, for these values of a, the ratio R defined by Eq.

•This is associated with the fact that, for | <r | small, /o(r) is close to unity and all other /„(r) are
orthogonal to/0(r). Hence f„(r) is nearly orthogonal to the function h(r) = 1.
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(2.2) is dominated by errors of order 1CT4 exp — ((j[ — f3'0)L (where 0' indicated Re /3)
by the f0 contribution and is therefore given by

£ /o(r)(r - r3) dr j £ fl(r)(r - r3) drj exp (-a0L). (2.11)R = <4

The evaluation of these integrals leads to the result

d 1 — Q-/8 + 47^/3840 + • • • r. ..
I - a/8 + 37<t2/3840 + . •. exp ( a°L)' ( )

For the range of a we have mentioned, R is very close to unity. In fact, for one case of
interest, 0 = 2ir/day, v = 1 cm2/day, u0 = 105 cm/day, L = 6.103 cm, r2 = .4 cm2, so
that o- = iu = 2.5i, a20 = 5i — .252, Re (/30L) = .038, Re (ftL) ~ 4, and it is clear that
the second mode contribution is only 10"4 exp (— 4) = 0(10~6) times that of the first
mode. Thus

R = .984 exp (- .038) = .946.

This number is so close to unity that one wonders what it might have been were there
no diffusion. The solution of Eq. (2.1) for v = 0 (suppressing, necessarily, the condition
*r(i, y, t) = 0) is

s = exp i£l{t — y/u0{ 1 — r2)}. (2.13)

The efflux ratio, R0 (meaning R for v = 0) is given by

R0 = 4 ! [ r( 1 — r2) exp {—i£lL/u0{ 1 — r2)} dr
I Jo

This integral may be evaluated to give

(2.14)

R0 = (1 — rri)e~m + m2 u 1 exp (—w) du
J m

= | (1 - m)e'm - m2Ei(—m) |, (2.15)

where m = i£lL/u0 . In the foregoing example, L/u0 = 3/8 and R0 — .91. Thus, the
attenuation is less for the diffusive model than for that with v = 0. However the asymp-
totic behavior of R0 with regard to m for the non-diffusing case is given by R0 ~ 0(m_1).
This implies that for sufficiently large L, the diffusive attenuation would be much
greater than that for the non-diffusive case since the diffusive attenuation is exponential
in, say, y. Nevertheless, it is curious that, in some low attenuation cases, the diffusive
transport should decay less rapidly than the analogous non-diffusive transport.

Aside from the foregoing result, one should also note that one can use the sampling
technique associated with the foregoing over quite a large range of conditions and
obtain accurate information with essentially no complicated data reduction. It appears,
in fact, that the interpretation is so simple for these cases that a deliberate increase
in tube length would sometimes be profitable in the experimental design.

3. Comparison with results of G. I. Taylor. After the foregoing work was completed
the author's attention was drawn to the analysis of a similar problem [1], In that paper,
the dispersion of particular (non-oscillatory) distributions of solute was studied. In
particular, it was noted that if a concentrated sample of solute were placed at y = 0 at
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time zero the dispersion would occur in a manner equivalent to that in a tube with
rigid body flow (u independent of r) and effective diffusivity / = ulrl/192v. If we identify
the results of the analysis of Sec. 2 with those obtained when we write

S, + (uo/2)S, = v'Syv , (3.1)
(both our results and [1] imply that the transport speed is u0/2), we also obtain the above
value for v' provided Qro/12e « 1.

If now we use a Fourier synthesis over Q(i.e. if we write S = H(co) Fnfn(u, r)
exp (iQt — 0nr) dtt) to describe the salinity distribution of Taylor's problem, it is clear
that the large time behavior would be governed by the small 12 behavior of the oscilla-
tory solution and, furthermore, the only eigenfunction which would contribute appreci-
ably would be /0. That is, the solution to the problem where a delta function distribution
of solute was introduced at t = 0 and y = 0 would be of the form

S(y, r, t) = ^ J f0(r, fi) exp (iQt — /30(f2)y) dto. (3.2)

and a steepest descent evaluation of this integral would lead precisely to the result
given by Taylor.

The only advantages of this approach over that of [1] are that: (1) it leads to the
observation that the equivalent diffusivity concept is valid only when the solute has
traveled an appreciable distance down the tube; and (2) the formal procedure used here
makes it possible to improve the accuracy of the prediction in the unlikely event that
such improved accuracy were required.

In so far as the problem with oscillating salinity intake is concerned, the analysis
of [1] would have predicted the response as .962 instead of .946 since the discrepancy
between unity and the Fourier coefficient of f0 was neglected in the analysis of [1].
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