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ON THE “BANG-BANG” CONTROL PROBLEM*

BY
R. BELLMAN, I. GLICKSBERG AND O. GROSS
The RAND Corporation, Santa Monica, Calif.

Summary. Let S be a physical system whose state at any time is described by an
n-dimensional vector z(f), where z(f) is determined by a linear differential equation
dz/dt = Az, with A a constant matrix. Application of external influences will yield an
inhomogeneous equation, dz/dt = Az + f, where f, the “forcing term’’, represents the
control. A problem of some importance in the theory of control circuits is that of choosing
S 80 as to reduce 2z to 0 in minimum time. If fis restricted to belong to the class of vectors
whose ¢th components can assume only the values + b, , the control is said to be of the
“bang-bang” type.

Various aspects of the above problem have been treated by McDonald, Bushaw,
LaSalle and Rose. We shall consider here the case where all the solutions of dz/dt =
approach zero as { — . In this case we prove that the problem of determining f so as
to minimize the time required to transform the system into the rest position subject to
the requirement that f, , the sth component, satisfies the constraint | f; | < b, may be
reduced to the case where f; = =+ b, . Furthermore, we show that if all the characteristic
roots of A are real and negative, f; need change value only a finite number of times at
most, dependent upon the dimension of the system.

Finally, an example is given for n = 2, illustrating the procedure that can be followed
and the results that can be obtained.

1. Introduction. Let z be an n-dimensional vector function of ¢ satisfying the linear
differential equation

g—j —Az+f, 20) =c, .1

where we assume that:

a. A is a real, constant matrix of order n, whose characteristic roots all have negative
real parts;

b. f is restricted to be real, measurable, and to have components satisfying the
constraints, | f; | < 1.

The first condition is the necessary and sufficient condition that all the solutlons of
(1.1) approach zero as t —» .

The problem we wish to consider is that of determining the vectors f whmh, subject
to the constraint (b), reduce z to zero in minimum time. This is a problem of Bolza of
rather unconventional type, and the techniques we shall employ are quite different
from the classical ones.

We shall establish two results:

TrEOREM 1. Under the above conditions, an f which reduces z to zero in minimum
time exists, and has components f; for which | f; | =
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THEOREM 2. If the characteristic roots of A are real, distinct, and negative, a minimizing
J exists with components f; for which | f; | = 1, and each f; changes sign at most (n — 1)
times.

The statement in Theorem 1 has been assumed in the past on an intuitive basis,
see McDonald, [3], and has been established in various cases by Bushaw [1], LaSalle
[2], and Rose [4]. The only paper we have had access to is that by Rose, and his methods
are distinct from ours. In addition, he is primarily interested in the case where the
condition in (a) is not satisfied.

Problems of this type arise in connection with many different types of control
processes. A discussion of the connection with servomechanisms is sketched in [2].

2. Proof of Theorem 2. We shall consider in detail only the case of Theorem 2,
where the characteristic roots of A are real and negative. It will be clear from the treat-
ment of this case how the proof of Theorem 1 goes.

Let X be a square matrix whose columns are the n linearly independent eigenvectors
z;0f A,and let \; (j = 1, - - - , n) be the corresponding » distinct, negative eigenvalues
of A; clearly, X is non-singular and all its elements are real. Finally, denote by A the
diagonal matrix whose jth diagonal element is \; . We have

Az; = \z; , 2.1
whence we see that AX = X A; hence
X'AX = A. (2.2
If now in (2.1) we make the transformation z = Xy, we obtain using (2.2),
¥'©0 = X,
(2.3)
y'() = Ay() + Xf(),
or, componentwise,
VO = A + 3 ad 0, (2.4

where the a’s are the elements of X~ Solving for y.(t), we obtain

W0 =10 e 0+ op ) [ ew (A9 Lol @d. (29

Since 2(f) = 0 is equivalent to y(t) = 0, we wish to find the least ¢ for which, for some
f,y:0) = 0,7 =1, --- | n,ie., for which

—5:00) = /: exp (—\;s) Z_"; a;;fi(s) ds, i1=1,---,n (2.6)

for some f.

Our first observation is that, given any starting value y(0) s 0 there exists a ¢ > 0
and an f, such that (2.6) is satisfied. In fact, there is a constant vector f(s) = k which
does the trick for some ¢ sufficiently large. For substituting f;(s) = k, in (2.6), we obtain

3 _ 40 _ A:7:(0)
ga”k" T —Joexp (=N ds  exp (—A\if) — 1°
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whence, by virtue of the definition of the o’s,

_ \:y:(0)
b= 2o ooy = 1 @7
Since — X\; > 0 the right member of (2.7) can be made as small in magnitude as we
please for sufficiently large ¢, and hence we can insure that | k; | < 1.
For each ¢ > 0 we have a linear mapping p, taking f into the n-dimensional vector
with ¢th component

[ w20 Tt as, 29

and this mapping clearly takes our basic convex set of f’s onto a convex subset C(¢) of
euclidean n-space. For any f in our basic set there is another, f, in the set which agrees
with f for s < ¢ and vanishes for s > ¢, so that, for ¢’ > t, p..-f = p.f = p.f, by (2.8),
and p,f is in C(#'). Thus C(¢) increases with ¢.

Now our desired least time is, by (2.6), the least ¢ > 0 for which C(f) contains the
vector — y(0). Since C(¢) increases, we have an interval (¢, , ©) for which C(t) contains
this vector, while for ¢ < ¢, this is not the case. We can see that C(f,) also contains this
vector as follows.

Denoting for any vector z = (z, , 2, , --- , 2,) the euclidean norm (3_; z})'/* by
|| z ||, we obtain, using (2.8), a constant k = k(t,) with the property that for all f and
t, ¢’ in a finite interval [0, ¢,] we have || p.f — p.-f || < k|t — t' |; thus, for |t — ¢’ |
small every point of C(¢') is close to a point of C(¢). Since — y(0) is in C(¢) for all ¢t > ¢, ,
— y(0) must be at zero distance from C({,) so that if we show this set is closed — 3(0)
must actually be in it. But each C(t) is closed, since by a well known fact about Banach
spaces [5], our basic set of f’s may be topologized so as to be compact and render each
p: continuous. Thus C(¢), as the continuous image of a compact set, is compact, hence
- closed.

Let us return to the fact that — y(0) is not in C(¢) for ¢ < ¢, . From the theory of
convex sets [6] this implies that we have a vector 8* of unit norm, for which, in the usual
inner product notation, (6°, p.f) < [6°, — y(0)] for every f. Since the vectors of unit
norm are compact in the euclidean topology, we may select a sequence ¢, increasing
to ¢, for which 6'* converges to some vector 6 of unit norm. But since p,,f converges to
pe.f, (6, o f) = lim (6", p..f) < lim [6", — y(0)] = [0, — y(0)]. Thus if f* denotes an
S for which p,,f* = — y(0) we have (0, p..f) < (6, p..f*) for all f, hence constants 8, ,

-, 0., not all zero for which f* maximizes the expression

To [ ep (A Taf@ds= T [ (T oy om [radfi@ . @9)

But this expression clearly has as its maximum

S5 b e (-2 L as (2.10)

achieved by setting f;(s) = sgn (3_; 6:a:; exp [— \s]). Thus it is clear that f*(s) =
sgn (O_: 0., exp [— \;s]) almost everywhere on the set where Y 6.a; exp (— A;s) 5 0.

Our principal result now follows, namely that we can achieve minimal time by
restricting f to assume componentwise == 1 on a finite number of intervals; in fact, in
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the case considered, each component need change sign at most n — 1 times. This latter
statement is a simple consequence of the fact that unless the continuous function ¢;
given by ¢,(s) = D7) 8:c;; exp (— \;s) is identically zero (in which case it makes no
difference as to our choice of f*), it can have at most n — 1 real zeros. This is well known
and there is a simple inductive proof.

3. A special case of n = 2. Consider the problem as before, with

-3 -2
A= ;
1 0

thus,
21 = =32, — 2+ f,, =z +f.. 3.1
The transformation
2 =2 — Y, Z=—h+Y (3.2
reduces the above system to
Y1 = =25+ i+ 1, Y; = —y2+f1+2fz, (33)

and we obtain, as before, for the set of admissible starting values, for a given t and f, , f,,

— = [ U0 + £01 s,
3.4)
—5,(0) = f €119 + 2£2()] ds.

From the preceding section, we know that if ¢* is minimal, then the optimal f* is given by

F1(8) = sgn (6.6 + 6:¢"),
3.5)
fa(s) = sgn (0,67 + 206:¢").

If we now ask the question “For what set of starting values y is it optimal to choose
Ji = 1, f, = 1 on an initial interval?’’ with a similar question for the other combinations
= 1, it is readily seen that the answers will determine an optimal policy. This is clear,
since any continuation of an optimal policy must be again optimal with respect to the
new starting values. We thus have
te
—1,(0) = j; e {sgn (0,” + 0,e") + sgn (0,* + 26.¢°)} ds,
(3.6)
te
—1,(0) = f e'{sgn (0,6" + 0,¢") + 2sgn (0,* + 26.¢")} ds.
[}
To answer the first question, for what values of y is it optimal to set f;, = f, = 1 on an
initial interval, we note that this is equivalent to the conditions
* >0,
01 + 02 > 07 (3.7)
6, + 26, > 0.
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Now, since the functions 6,6 + 6.¢’, 6,6>* + 26,¢’ can each vanish at most once,
we see that the above case breaks down into four sub-cases, namely:

(a) 6, exp (2t*) + 6, exp (t*) > 0, ® >,<, @ <> @ <,<
(3.8)
6, exp (2¢*) + 26, exp (t*) > 0.

Case (a) is trivial and consists of the arc o illustrated in Fig. 1. o’ is defined para-
metrically by

1(0) = 1 — exp (2t*) |

¥2(0) = 3(1 — exp [¢*]),

Y,(0)
3

*>0 (3.9

Fie. 1.

as one can readily verify by working out the integrals. Moreover, the curve defines an
optimal path, since the solution of the differential equation is, with f, = f, = 1 identi-
cally, and y,(0), y.(0) defined as above, precisely a sub-arc of «’ beginning at y(0) and
terminating at the origin.

Case (b) is vacuous, for if we have

0, exp (2¢*) + G, exp (£*) > 0 and
(3.10)
6, exp (2t*) + 26, exp (t*) < 0,

we obtain, by subtraction, and the condition t* > 0, that 6, < 0. But, 6, + 6, > 0,
whence 8, > 0. We thus have

6, exp (2t%) + 26, exp (t*) > 6, exp (t*) + 26, exp (¢*)
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Z,(0)
43

fy=1
for 1
4-3
Fia. 2.
which contradicts
0, exp (2t*) + 26, exp (t*) < 0. 3.12)

We shall treat case (3.8¢c) in detail. Case (3.8d) can be treated similarly, but is a
trifle more involved, albeit elementary, and will be omitted on those grounds.
We have, upon substituting in (3.6) for case (c):

In(—04/601) t* t*
—y,(0) = f exp (2s) ds — f exp (2s) ds + f exp (2s) ds,
0 1n(=84/61) 0
(3.13)
In(—01/0,) [3d te
—y:(0) = f exp (s) ds — exp (s) ds + 2 f exp (s) ds.
(] In(~02/6,) o
Simplifying, we obtain
"'!/1(0) = (02/91)2 -1,
3.149)
—:(0) = —2(6,/6,) + exp (t*) — 3.
If now we set z* = exp (t*), our conditions become
* > 1,
6, + 6. >0,
6, + 26, > 0,
8,z* + 6, < 0, (3.15)

8,2* + 20, > 0,
¥:(0) = 1 — (6,/6)7,
y2(0) =3+ 2(02/01) — z*.
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We easily obtain from the above that 8, < 0. By homogeneity, we can set 6, = — 1,
6, = X and we obtain the equivalent conditions

N> *>Aa>1 (A)

yl(O) =1-\
(B)
¥.(0) = 3 — 2\ — z*
i.e,, we wish to find the image of all pairs (z*, \) satisfying (A) under the mapping
defined by (B). Pictorially this is represented by Fig. 3.

X Il[ l,’
IIL (A) 1,7
Ry ==

s | - |
s\ '
7= | |

- | | xl
0 ! 2

Fie. 3.

On the other hand, the Jacobian of the transformation (B) is given by

—2) 0

-2 -1

throughout (A); hence the transformation is non-singular and the boundary of the
image is the image of the boundary. Making use of this fact we obtain the region for
case (3.8¢):

10 <0 (3.17)
and
3 — 41 — »(0)]"* < ¥,(0) < 3 — 3[1 — w(0)]'. (3.18)

In a similar manner we obtain a region for case (3.8d). The union of cases (3.8a) through
(3.8d) is the set of all starting values for which f; = f, = 1 is optimal on an initial
interval. In a similar manner we obtain the region f, = 1, f, = — 1. (Notice that we
need not compute the other regions since they can be obtained by skew-symmetry.)

The final result of our calculations is illustrated in Figs. 1 and 2. Figure 2 is the
image of Fig. 1 under our initial transformation and gives the optimal policy in terms
of our initial starting vector ¢ = [z,(0), 2,(0)].

In terms of optimal paths (see Fig. 2) we can state the following: A path initiating
in the (1,1) region continues with f; = 1, f, = 1 until it strikes either the straight
segment OB or the parabolic arc 8. In the former case f; switches from 1 to — 1 and the



18 R. BELLMAN, I. GLICKSBERG AND O. GROSS [Vol. XIV, No. 1

path continues along OB to the origin. In the latter case f; switches to — 1 at 8 and the
path continues in the (— 1, 1) region until it intercepts the parabolic arc a at which
fa changes from 1 to —1 and « is followed to the origin with f, = f, = — 1. Similar
remarks hold for the skew-symmetric regions.
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