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where by definition

= V\ , = Va ■

{It is to be noted that f(z) is the Weierstrassian function associated with ip{z).)
This completes the analysis, for from Eqs. (4) and (10) it follows that

wIX = JV2u> + F,

wv„ = %V2w — F,

and, consequently, all of the expressions in Eqs. (3) can now be presented in closed
form.

If we introduce Jacobi's theta functions, we can write

r _ ^ T"3 I Y — *1~1 ei(") d4(v) dijvo + "*) ̂ i(y0 — f*)
SirzD L«, Qi(y) *" " "J Oi(v + Vo)0i(p — v0)6i(v + v*o)6i(v — v%)

, Pi ["^3 O'M , ■/ _ *->1 + v*)6i(v — V*)
8ir2D U, 8,(p0) "° J 0,(vo + ")0i("o ~ v)0i(fo + "*)0,(j»0 — v*)

+ complex conjugate,

where
z  Zo_

" 2a), ' "° 2o>i'

By some arguments involving the properties of the real and complex parts of analytic
functions z of a complex variable z, it is possible to show that

w*v + jp (yQ, + xQ„) = ~\ Ki(z, z0 , 2*, 2?) + K(z0 , z%),

where K1 is the harmonic conjugate of Hx . However, there seems to be no immediate
way of evaluating the function K.
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GRAPHICAL DETERMINATION OF A DISCONTINUITY SURFACE
BY WAVE REFLECTION*

By HEINZ G. HELFENSTEIN (University of Alberta)

1. Introduction. The reflection of waves, such as seismic reflection for prospecting
has been discussed in many papers and books. The methods used in practice all share
the simplification that the discontinuity surface is replaced in the neighborhood of the
shot point by its tangent plane, and it is only this tangent plane which is determined.
We shall discuss here a mathematically exact and fairly simple graphical method of
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determining points of the discontinuity surface from a limited number of well chosen
points of the time-distance surface. The velocity of the waves in the surface layer is
assumed to be constant and known.

2. Notation. Introduce a set of rectangular axes in space such that the surface
of the earth is the x, y plane and the positive z-axis points vertically downwards. Assume
the velocity s of seismic waves to be constant and known in the surface layer down to a
discontinuity surface D. Waves originating from a shot at the origin are reflected at D.

To each point F = (m, v, 0) on the surface of the earth there corresponds a value T
of the time, viz. the time from the shot to the arrival of the reflected wave at F. Multi-
plying this time by the velocity s we obtain the total distance travelled by the wave.
Speaking of the "time-distance surface" S we mean that w = sT is plotted against u, v.

According to the law of reflection the ellipsoid of revolution which is the locus of
the points whose sum of the distances from the two points (0, 0, 0) and (u, v, 0) is equal
to w is tangent to the surface D. In other words: D is the envelope of all these ellipsoids;
the surfaces S and D are related by the contact transformation associating to each point
(u, v, w) the above mentioned ellipsoid.

This transformation can of course be expressed by formulae connecting the equations
of the surfaces and containing their partial derivatives. Since we can measure only a
limited number of points of S, however, we try to avoid the computation of these partial
derivatives. Our object is to indicate a construction by ruler and compass for points of
D using only measurable data about S, in particular only a finite number of well chosen
points of S.

3. Transformation of a line-element of S. We start with the following question:
What information about D can be obtained from the knowledge of a single (non-vertical)
line-element of the time-distance surface, given by the two close points P = (u, v, w)
and Pt = (m + Am, v + Ay, w + Aw) on a line t in space?

With each of these points an ellipsoid of revolution E and Ex is associated. The foci
of E are 0 = (0, 0, 0) and F = (m, v, 0); those of E± are 0 and F, = (u + Am, v + Ay, 0).
In general, the surfaces E and Ey will intersect in a fourth order curve C4 . Let I be an
arbitrary point on C4 . Then by definition of the foci, we can write

70 + IF = w,

10 + IFi = w + Aw.
Subtracting yields

IFi — IF = Aw.

The last equation means that I is situated on one sheet of the hyperboloid of revolution
H with foci F and and constant difference of distances from them equal to Aw. It is,
more precisely, the sheet opening in the direction of descent of our line-element. The
asymptotic cone belonging to this surface has its axis along the line FF1, and its apex
is the midpoint of this segment.

Denoting by As the distance FFx, the opening of this cone is given by cos a = Aw/As.
On the other hand, the slope of the line PPt with respect to the u, y-plane is given by
tan r = Aw/As.

Hence, for Px tending to P along the line t, the hyperboloid H degenerates in a right
circular cone C whose apex is at F, whose axis is the projection of the line t on the u,
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D-plane, and whose opening is found from

cos a = tan r. (1)

The above mentioned sheet of H containing I becomes that half of C which opens in the
direction of descent of the line-element.

We showed that the intersection CA of E and Ei is at the same time the intersection
of E and H. These two surfaces intersect in a fourth order curve Kt consisting in general
of two loops, one on either side of F, corresponding to the two halves of the cone C. The
loop in the direction of descent of the line-element is a locus for the point R on the dis-
continuity surface where the wave traveling to F was reflected.

Since both of the surfaces E and C are symmetrical with respect to the u, y-plane
the same is true for their intersection K4 . Hence the projection of Kt on the u, v-plane
is a conic (more exactly, it consists of two arcs of a hyperbola).

If we know two line-elements through a point P on the time-distance surface (i.e., a
tangent-plane) we are able to find the reflection point R by intersecting the two corre-
sponding curves Kt (both of which lie on E). All the curves Kt originating from the
oo1 line-elements which make up the tangent-plane of S intersect in the same points
(there are 2 of these points, symmetrical with respect to the u, y-plane). This follows
from the fact that the reflection point is uniquely determined by a point of S and its
tangent plane.

4. Two special line-elements and the corresponding loci. For arbitrary line-elements
this intersection of two fourth order curves is of course graphically too troublesome.
We shall show, however, that in each tangent-plane of S there are two special line-
elements yielding simple curves Kt .

(a) First locus for R. One of them is the line-element in radial direction: the axis
of its corresponding cone C coincides with the axis of E, and Kt therefore degenerates in
a pair of circles the planes of which are perpendicular to the line OF. We can find them
graphically in the following way.

First, from the slope of the radial line-element we find the angle according to (1) by
an obvious construction (See Fig. 1).

Fig. 1.

Then assume that OF is the direction of ascent of the time-distance surface in radial
direction. The angle a is placed along the axis OF with its vertex at F and opening
towards 0 (see Fig. 2). Along its other leg we mark off the distance FQi = w. The mid-
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Fig. 2.

perpendicular of the segment OQi intersects FQX in a point C, for which

C, 0 + CiF = C1Ql + C1F = w.

Hence Cx is a point of the ellipse in which the u, y-plane intersects E. As the line FQX is
also a generating line of the cone C (because of the angle a), Cj is a point of Kt . For a
time-distance surface descending in radial direction the distance w is measured off the
line FQ1 in the opposite direction and we get other points Q2 and C2. If C[ and C2 denote
the symmetric points of Cx and C2 with respect to the line OF, the segments CtC[ and
C2C2 are the projections of the two circles of which Kt consists. CXC[ is the loop con-
taining R if S is ascending in radial direction, otherwise it is C2C'2.

(b) Second locus for R . There is another choice of the line-element for which K4
is still simpler. For the direction of the level-line of the time-distance surface we have
t = 0. From (1) we conclude therefore that a = 90°, which means that the corresponding
cone C degenerates in a plane perpendicular to the projection of the level-line through F.
Kt becomes then an ellipse the points of which are counted twice, and the projection of
which on the u, v-plane is a segment which is another locus for the projection of R. This
gives the interesting property that the projection of the reflection point is always on the
normal n to the level-line of the time-distance surface.

The depth of R can easily be found by means of the semi circles over C1C( or C2C2.
Our construction fails if CtC'i coincides with n. This can only happen if the level-line
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is itself radial. In this case we use for instance the line-element the projection of which
is perpendicular to OF. Its angle r is the same as the angle of the tangent plane of S. The
axis of its corresponding cone C is perpendicular to OF. Hence we have to intersect this
cone [its opening is again found from (1)] with the circle C,C[ which is done by turning
down the plane of the latter.

As soon as we have a point of D we have also its tangent-plane: it coincides with the
tangent-plane of the ellipsoid E.

5. Choice of the points on S. The accuracy of our construction depends largely
on the accuracy with which the directions of the level-lines and the slopes of the radial
sections can he found. If the discontinuity surface in a certain area A is to be found it is
therefore advisable to place the recording instruments in several straight lines L, radiating
from the shot-point over .4. From each line L, we obtain the graph of a radial section of
the time-distance surface by joining the measured values w on Li by a smooth curve.
From this curve the slopes r of the tangents can be found graphically. In the map of the
area A, the level-lines can be drawn from the measured data.

For each seismometer we obtain one reflection point with its tangent-plane. However,
for each intersection of a level-line with one of the lines L, which occurs in a "new"
point (where no instrument was placed) we get another point of the discontinuity surface.
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A NOTE ON NUMERICAL DIFFERENTIATION*
By JOHN W. MILES (University of California, Los Angeles)

Summary. Given the matrix f = {/,}, representing f(x) at the set of points {re,-},
the mth derivatives of /(;r) at these points are expressed in terms of all of the /, according
to f<m> = C_1A"'Cf, where A is the sum of the skew matrix [(x, — x,)_1] and the diagonal
matrix formed by summing the terms in the corresponding rows of this skew matrix,
and C is the diagonal matrix having as its elements the products of the elements in the
corresponding rows of the skew matrix.

1. Introduction. Let f be the column matrix

f = {/.) = {/(*.)!• (i)
We require a square matrix D such that**

f'" - LJ - d"'- <2)
* Received Feb. 28, 1955; revised manuscript received May 16, 1955.
**The representation of derivatives in matrix form, as in (2), also has been considered by J. Kuntz-

man in a paper presented at the International Mathematical Congress in Amsterdam (Sept. 1954),
but no details have been published. It appears, from private correspondence with Prof. Kuntzman,
that the results of Eq. (8) et seq. in the present paper are probably new.


