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THE DIFFRACTION OF A CYLINDRICAL PULSE BY A HALF-PLANE*
BY

ROBERT D. TURNER (Ithaca, New York)

I. Introduction. In the past fifty-eight years, many papers have been written on
the theory of diffraction in two dimensions by a wedge. Since the time of Sommerfeld's
attack on the half-plane [1]**, several approaches, using various specialized forms of
excitation, have been investigated. Sommerfeld's use of multi-valued functions for
plane wave excitation has been supplemented by Macdonald's expansion in the appropri-
ate eigenfunctions for the problem [2]. Much of the work that has been done in this field
has been for the domain of harmonic time-dependence; in a sense, these results represent
complete solutions for the particular form of excitation involved. However, the inverses
of these Fourier-transform solutions are rarely (if ever) determined.

Recently, more direct attacks on the time-dependent wave equations have been
successful. Keller and Blank [3] have obtained useful results for the scattering of plane
waves by wedges and corners. By recognizing the nature of propagation of discontinuities
for solutions of hyperbolic partial differential equations, they are able to make an
appropriate change of independent variables. A change of dependent variable yields
the Laplace equation, which is then solved by conformal mapping. More recently, Kay
[4] has achieved a rather general result, in that he is able, at least in principle, to write
down the solution for an arbitrary form of excitation. The method is to make a change
of independent variables suggested by the work of Keller and Blank. This leads to a
non-orthogonal co-ordinate system, and he devises an integral transformation to treat
the rather complicated differential equation he obtains upon separation of variables.
The transform kernel involves a Whittaker function, and the integration is over a
reasonably complicated contour in the complex plane of the separation parameter.
This brings up what seems to be the only limitation on his method—the mathematician's
ingenuity in carrying out the details of the analysis. The intricacy of the transformation
precludes the possibility of obtaining a more general result than he does—viz., the
verification of the results of Keller and Blank.

The method of attack that we propose is less sophisticated than the foregoing, but
possesses the advantage that we can determine the Green's function for the problem.
For simplicity, we restrict ourselves to the case where the wave-function is constrained
to vanish on a half-plane, the excitation being a line source parallel to the edge of the
half-plane. The analysis is no more difficult for the general case, however, and may
even be extended to the diffusion equation.

II. Explicit statement of the problem. We wish to determine a scalar function
<j> such that

V7^ - 1 - s(r - - °*> m
V 4> — 2 r\ >2 Wc at r0

subject to the boundary condition

  4> = 0 (2)
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for 0 = 0 and 0 = 2ir and the initial conditions

4> = 0 and = 0 (3)
at

at

t = 0.
Figure 1 shows the relationship between the source point (r0 , 0O), the observation point

(r,9)
OBSERVER \ ^ OZ, ej

SOURCE

  OBSERVER ON SCREEN
SCREEN

Fig. 1. Relationship between source, observer, and diffracting screen.

(r, 0), and the diffracting screen 0 = 0 (or 0 = 2T). For convenience, we denote by R
the distance from the source point to the observation point:

R = [r2 + rl — 2rr0 cos (0 — 0O)],/2; (4)

when the observation point is on the screen, we call the distance R0 :

Ro = [x2 + rl — 2xra cos 0O]1/J. (5)

The problem is reduced to a simpler boundary-value problem at once by writing

<t> = <£inc + u (6)

where [5, p. 332, Eq. 57]

</,inc =|° t < R/c ^

((l/2x)[f - R2/cTUt t>R/c

is the free-space Green's function for the two-dimensional wave equation, and
satisfies the inhomogeneous wave equation (1) as well as the initial conditions (3).
Accordingly,

= (8)

and on the screen (0 = 0 and 0 = 2ir),

u = j° t<R o/c (9)

- Rl/cYW2 t > R0/c

Also, u satisfies the initial conditions (3). The problem is then to find u.
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III. Solution of the problem. We now consider the one-sided Laplace transform
of u, which we denote by U. On making use of the initial conditions (3), the partial
differential equation transforms to

V2C/ - (p2/c2) U = 0,

and the boundary condition becomes [6, p. 125]

U = (— 1 / 2x) K0(pRo/c)

on the screen. The function K0 is the zero-order Macdonald function [7, p. 78], which
is proportional to the zero-order Hankel function of the first kind with imaginary
argument.

It is convenient to discuss the function

v = U + (1/2T)K0(pr0/c), (10)

which vanishes with r. After multiplying by r2, the partial differential equation satisfied
by v is:

r2 d2v . rdv . d2v pV pV . . . .. .
-&r + + off ~ *7-» = - £ (.WRMc) (11)

and the boundary condition on v is that

v = (l/2ir)[K0(pr0/c) — K0(pR/c)] at 0 = 0 and d = 2 x. (12)

We now make use of the Grunberg modification [8] of the integral transformation
of Kontorowich and Lebedev [9, 10]. This states that if

F(s) = f v(pr/c)K,(pr/c) dr/r, (13)
Jo

where K, is the Macdonald function of order s, then

v{pr/c) = (1 /iri) J V(s)I,(pr/c)s ds, (14)

where I, is the modified Bessel function of order s [7, p. 77]. In transforming (11) by
means of (13), we integrate by parts several times and make use of the modified Bessel
equation satisfied by K, , obtaining finally?

d2V ,  sK0(pr0/a)
dd2 4sin(xs/2)? + s2^ = -rzV'/V (is)

Here we have made use of the formula ,

f K,(x)x dx = . /q,Jo 2 sm (xs/2)

[7, p. 388, Eq. 8; 6, p. lj. The boundary condition (12) must also be transformed; at
0 = 0 and 6 = 2x, we have V = V0, where

V0 = (l/2x) f K.(pr/c)[K0(pr0/c) - K0(jpR0/c)] dr/r. (16)
Jo
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This integral is evaluated in the appendix. We have now reduced the partial differential
equation to a particularly simple ordinary differential equation. All that remains is to
solve the ordinary differential equation and carry out the two inversions for the two
transformations used. The solution to the differential equation is

F(s) = .4(s) sin ds + B(s) cos ds K0(pr„/c)
4s sin (tts/2)

On applying the boundary condition, we have

tt/ n = \ v , K0(pr0/c) "I cos (t - 6)s _ K0(pr0/c)
L ° 4s-sin (irs/2)J costs 4s-sin {its/

Inserting the expression for V0 , we have:

s/2)'

i7/.\ v /a cos (tr - e0)s cos (tt - 6)s K0(jpr0/c)
- KMC)  4s sin (tts/2) '

Note that V is analytic at s = 0. (This is easily seen if we recall that K,(z) is even in
s [3, p. 79, Eq. 8], so that for s —* 0, K.(z) = K0(z) (1 + as2 + • • •)•)

The next task is to invert this transform:

» - i f" \I,W.) (' ~ V' c°" (" ~ lj.(pr/C)» ds (17)«JL s sin 2irs 4s8m(jrs/2)J ^ ' ' v '

For r < r0 , we may use the inversion formula (14) as it stands, computing the integral
by closing the contour with a semicircular arc on the right as in Fig. 2, and applying

5-PLANC

Fig. 2. Contour for inversion of the transform.

the theory of residues. If we choose the radius of the semicircle to be J (2m + 1), where
m is a positive integer, it is not too hard to show that the integral over the semi-circular
arc must vanish as m —* °°. Thus,

p= -2^ residues inside the contour = «, + Da ,

where
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= -2 ± residues of K.(pm/c)T.(pr/c) cos (> - g), cos (r - Q0)s
Jtt sm 27ts

at s = n/2;

»! = -2 £ residues of Kn(Wo/c)I-(w/c) at g _ 2n
tTi 4 sin (xs/2)

We evaluate v2 first, since it is the simplest:

v-2 = (l/ir)K0(pr0/c) ± (-1 )"IJpr/e).
n — 1

This is easily summed by means of a well-known summation formula for Bessel functions
[7, p. 34, p. 77]:

v2 = (l/2ir)Kn{pr0/c) - (l/2ir)K0(pr0/c)I0(pr/c).

Note that the first term of v2 is exactly what we added to U in Eq. (10). Next,
oo ^ |

i>, = (— 1 /tt) x; ( - \yKn/2(pr0/c)I„/2(pr/c) cos - n(ir - 0) cos - n(ir - 0O).

After some trigonometric manipulation, we find that
co | ^

v = (l/2ir)K0(pr0/c) + (1/jt) £ K„/2(pr0/c)In/2(pr/c) sin - nd sin - nd0
n "■ 1 . odd ^ ~

- j- {/L'0(pr0/c)/o(p?-/c) + 2 Kn(pr0/c)In(pr/c) cos n(0 + d0)4ir

- ^ |K0(pr0/c)I0(pr/c) + 2 ^ KJpr0/c)T„(pr/c) cos n{6 - 60)

The bracketed terms may be summed [7, p. 361, Eq. 8], giving finally:

v = (1 /2ir)K0(pr0/c) + (- l/4*)[K0(pR/c) + K0(pR,/c)],

+ (1 A) 12 Kn/2(prQ/c)In/2(pr/c) sin \ nd sin \n6a ,
n-l.odd ^ *

where
ft, = [r2 + rl - 27T0 cos (0 + 0o)],/a; (18)

Ri is the distance of the observation point from the image (with respect to the plane
y = 0) of the source point. Finally,

U = (1/tr) Kn+U2(pra/c)I„+l2/(pr/c) sin (n + |^sin (n + |^0

- (l/4»)[X„(pR/e) + KoipRt/c)]. (19)
Equation (19) is valid only if r < r0 . If r > r0, it is necessary to revise the form of

the inversion integral. This is done by utilizing the defining equation for the Macdonald
function [7, p. 78, Eq. 6] and the symmetry of V(s), which is always even. Doing this,
Eq. (14) becomes

/•too

v = (1 /iri) / V(s)(—2/t)Ka(pr/c)s sm ts ds.
Jo
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Now when we insert the expression for F(s) into the inversion formula, the term in-
volving K0(pr0/c) will give the same result as before, when we sum over its residues.
The other term turns out to be just the integral for V, that we evaluated previously,
with r and r0 interchanged. This merely interchanges r and r0 in the expression (19)
for U. Introducing the shorthand notation: r> = max (r, r0), r< = min (r, r0), the two
expressions for U may be combined:

V = (1/tt) X K„+U2(pr>/c)In+W2(pr</c) sin (n + sin

- (\/^)[Ka(PR/c) + KoipRJc)]. (20)

The next step is the inversion of U. This is facilitated by use of the integral of Sonine
and Gegenbauer [7, p. 367, Eq. 17]. Specialized to our problem, this reads:

Kn+W2(pr>/c)I»+i/2(pr</c)

1 fry V/2 f exp [-(P/C)(r2 + ro ~ 2rr„ cos 4>Y/2] , . .
- 2 (rfo) I (r2 + r02-2n-0cos^>r P"(C0S Sm * ^

when Pn denotes the Legendre polynomial of order n. But this last integral is the Laplace
transform of

1 (yy V'2 f 5^ ~ (1/C)(r2 + ro - 2/r0 COS <t>)1/2] p , . . ,
2 l  (r> + rl-2rr0 cos 0)1/2 P.(cos *) sm * d*.

Performing the indicated integration, we find that

Kn+U2(pr>/c)In+W2(pr</c)

is the Laplace transform of the function

_ \ c(rr0)"'/2Pn^r + ^ ° 1 j | r - r0 | < ct < r + r0

0 otherwise.

The remaining terms of (20) are easily inverted [6, p. 125], so that u = u3 — u2 ,
where

*£***■] "'m (" + D"sin ("+ !)'•
Mi =

Vj2 —

tt8 =

2ir(rr0)

otherwise,

0 t < R/c

1 t > R/c,

| r — r0 | < ct < r + r0

(22)
4x[t2 - R2 jc~]1/2

0 t < RJc

t > R\/c.
(23)

4ir[t2 - R2/c2
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Now <t> — 0'"" + u, and on comparison of (22) and (7), we see that 4>'"r = 2 u2 , so that

<£ = «,+ ?/2 + v3 . (24)

This completes the formal solution of the problem. Since the series converges very
slowly, it is not a very practical result as it stands. If the Green's function <£ were to be
used for the determination of the response to some less singular excitation, the series
resulting from term-by-term integration of (2) would converge much more rapidly.
In special cases, however, the series (21) may be summed, and we shall now consider
some examples where this may be accomplished.

There is an apparent difficulty that may be resolved at once. The term u3 represents
a source at the image of the source point whereas there is no such source in the original
problem. There is, however, a contribution from w, which just cancels the singularity
in u3 at (r0 , 2x — 60). To see this, we investigate the behavior of u, and u3 at this point.
We have at once that

u3 = — l/4ir< t > 0,
and

u i = (c/2ur0) i]f|l - J sin2 (n + |^0O 0 < ct < 2r„ ,

0 otherwise.

Using sin2 x = 5(1 — cos 2x), ux may be broken up into two series. The series involving
cos (2n + 1)0O is not singular as t —> 0. We therefore consider only

(c/4irr0) J; P„(l - ^!) 0 < ct < 2r0u[ = .

0 otherwise.

This series may be summed [6, p. 53]:

u[ = l/4ir<, 0 < ct < 2r„ .

Thus, Mi , as stated above, cancels the singularity of u3 at the image of the source.
Similarly, at (r0 , 60), the Ui term adds to the term u2 to give the proper source-like
character (i.e. with a coefficient l/2x instead of l/4x) at this point.

The next case to be considered is where 6 = 37r/2, 0O = tt/2 (see Fig. 3).

ir0>-rr/z\ 50uR.cc
I

SCREEN

| IMAGE: of SOURcr

(r.ZTTIz) 1 085CRVER

Fig. 3. Configuration for a test of Babinet's principle.
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The series may be summed as in the previous example, yielding

<t> =
(l/4x){[i2 - (r + r„)7cT'/2 - [*2 - (r - r0)7cT'/2! c* > r + r00
0 otherwise

Now the problem complementary to the case under consideration has as the boundary
condition on the complementary screen, y = 0, x < 0,

j£-o.an
The solution here is

j(l/4*){[<2 - (r + r„)7cT1/2 + [<2 - (r - r0)7cT,/2} c< > r + r„

(0 otherwise.
* =

Now Babinet's principle states that the signal and the signal for the complementary
problem must add up to the incident excitation. Adding our two solutions, we have

i + (t)= j(l/2x)[f - (r + r„)7cT,/2 ct>r + r0

(0 otherwise,

which is indeed the incident field. Thus, Babinet's principle has been verified in the
time domain for this special case. Because of the highly discontinuous nature of the
solutions, this constitutes a rather severe test of the validity of Babinet's principle in
the time domain.

Finally, we shall compute the "charge density"—that is, the discontinuity in d<t>/dn
across the screen, for the case d0 = r. From (20), the Laplace transform of p(x), the
charge density, is given by

P(x) = (2/tx) X) Kn+1/2(pr>/c)In+i/2(pr</c)(—l)n(ri +

None of the other terms contribute to P(x) since their normal derivatives are continuous
across the screen. This series may be summed [7, p. 366, Eq. 11], giving

(lA)(r0/x)1/2 exp [~(p/c)(x + r0)]

so that

P(x) = r .r0 + x

_ «[( - (1/cXx -f
+ x)

Thus, the charge on the screen has no after-effect, and the "amplitude" of the pulse
falls off as x~3/2 as we move away from the edge.

IV. Conclusion. We have derived Green's function for the time-dependent wave
equation and considered a few of its properties. The method is quite straight forward-
two transformations and two inversions—and is readily generalized to the case of the
wedge. As we remarked in the introduction, we may also treat the problem of (say)
heat flow due to an instantaneous source near a wedge held at constant temperature or
near an insulated wedge. The principal change to be made is the substitution of p1/2 for
p in all of the equations up to Eq. (20). The inversion of the product

Kn+Up1/3r/c)I„+U2(p1/3r/c)
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is not as easy, but can be carried out for any specific n. Although the general term in the
series is difficult to determine, the series converges rapidly enough so that this is not im-
portant. (Note that the extremely slow convergence of the series (21) is not a fault of
the method, but only a consequence of the character of the solution). A paper on this
is planned in the near future.

Appendix. Evaluation of V0 . With a convenient change in notation, we have

V0 = (1/2tt) [ K.(x)[K0(x„) - Ko\(x2 + xl - 2xxa cos 0„)1/2J] dx/x.
Jo

We use the addition theorem for Macdonald functions [7, p. 361, Eq. 8], and get

2jtF0 = P K.(x)\K0(x0) - ± emKm(x0)Im(x) cos mdA ^
Jo L m-0 J X

+ £ K.Or)^Ko(io) - E tmKm(x)Im(x0) cos m0oJ ^ ,

where tm = 1, m = 0; m = 2, m > 1. Interchanging summation and integration we have:

2F„ = K0(x0) f" K.(x)[ 1 - /<,(*)] v " 2 E Km(x0) cos md0 f" K,(x)Im(x) ̂
Jo X m-1 JO X

+ f K.(x)[K0(x0) - K0(x)I0(x0)] v - 2 E Im(x0) cos mdn f K.(x)KJx)
J it X m-i Jx# X

The second and fourth integrals are evaluated by means of the indefinite integral
for cylinder functions [7, p. 134, Eq. 7]; when this is done, the two series may be combined
to give

-2*0 E 1°2S [KmK.i: - KJmK[ - ImK.K: + ImKmK'.],
tn-1 "l S

where the argument x0 has been suppressed. The second and fourth terms in the square
brackets cancel, leaving just K,(x0) times the Wronskian of K„ and I„ , which is just
l/x0 [7, p. 80, Eq. 19]. Thus, the series in the expression for V0 combine to give

— 2K,(x0)
m-1 Tn s

This last series may be summed [11, p. 278, Eq. 13] so that the expression for F0 now
reads

2irF„ = K0(x0) f K.(x)l 1 - /„(*)] v ~ K°(xo) f ^.(x)[l - /<,(*)] v
Jo X Jx. X

+ go)s ~X] + K0(X0) f" K.(x) ̂  - Io(xo) f K,(x)Ko(x) ̂
L o Sill TTo ITS J Jx% X JXq X

- KM [ K.MI1 - /„<*)] f + - i]

+ K0(x0) f K.(x)Io(x) - - Ioixo) r K.(x)K0(x) §•J,. x J„ X



72 ROBERT D. TURNER [Vol. XIV, No. 1

The last two integrals may be evaluated as above; this time, we obtain the Wronskian
of K0 and I0 and another term in 1/s2. The Wronskian term cancels the I firs2 term in
the above expression, leaving

2irF„ = K0(xo) f K.(x)[l - I0(x)] — + tK,(x0) cos - da)s - (i/s2)K0(x0).
Jo x s sm 7rs

To evaluate the remaining integral, consider the contour integral

j> H(:\z)[ 1 - J0(z)}(dz/z)

taken over the contour shown in Fig. 4. In the limit as p —> 0 and /? —> , the integrals

Z-plane

Fig. 4. Contour for evaluation of the integral
J™ K,(y)[l - I0(y)] dy/y.

over the circular arcs contribute nothing (assuming that | Re(s) | < 2; the result for s out-
side this strip is obtained by analytic continuation). Thus,

(2/iri)e~iw"2 r K.mi ~ Io(y)](dy/y) = [~ H™(x)[l - J0{x)]{dx/x).
Jo JO

Equating real parts, we have

(-2/V) sin | its f K.(y)[ 1 — h(y)\(dy/y) = [ J,(x)(dx/x) — f J,(x)Ja(x)(dx/x).
£ Jo Jo Jo

These integrals have been evaluated elsewhere [7, p. 391, Eq. 1; p. 403, Eq. 2], so that

/. ~ - jarfcD ~ ssinl'4
Putting this into the expression for V0 , making several cancellations, and reverting to
the original notation, we have:

F„ = K.(pro/c) C°! (t. ~ 6o)S - K0(pr0/c) 1-^ ' 2s sm %§ ^ 4s sm Jxs
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