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ON THE VIBRATION OF ELASTIC BODIES
HAVING TIME-DEPENDENT BOUNDARY CONDITIONS*

BT

J. G. BERRY AND P. M. NAGHDI
University of Michigan

1. Introduction. In the classical treatment of the small vibrations of elastic bodies,
the displacements are assumed to have the form1

Ui(x, t) = u1(x)qn(t), (x ss x, , x2 , x3), (1)

where the u"(x) are the so-called normal modes and the q„(t) are the generalized co-
ordinates. The boundary conditions, which are homogeneous, serve to determine the
mode shapes and the secular equation governing the natural frequencies. If, however,
the boundary conditions are non-homogeneous, the classical method usually fails since,
in general, the boundary conditions and the displacements involve different functions
of time.2

Among the various methods which may be employed in the study of the motion of
a vibrating elastic body having time dependent boundary conditions, the integral
transform techniques and the use of Lagrange's equations,3 for certain problems, are
perhaps most familiar. An alternative approach is to transform the original problem
into an equivalent forced vibration problem with homogeneous boundary conditions;
this approach is adopted here. The basic idea involving the transformation of variables
so as to remove the non-homogeneous boundary conditions, is well known [1, p. 277].
However, this procedure, in connection with vibration of elastic bodies having time
dependent boundary conditions, was first used by Mindlin and Goodman [2] in dis-
cussing the motion of beams and later by Herrmann [3] for problems of rods.

The present paper contains a method of solution for the motion of any finite, vibrating,
elastic body having arbitrary time-dependent boundary conditions and initial con-
ditions. The method used involves a transformation of the type employed by Mindlin
and Goodman [2], However, the resulting forced vibration problem is discussed without
reference to stress strain relations and therefore the procedure is quite different from
that contained in [2] or [3]. Since the stress strain relations are not explicitly specified
the results are readily applicable to all linear theories of elasticity including the special
theories of rods, beams, plates and shells; in each case, it is only necessary to introduce
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the appropriate stress strain relations. This, together with some of the features of the
procedure, is illustrated by means of an example in Sec. 4.

2. Statement of the problem. Let V and S be the volume and the boundary surface
of a region R (not necessarily simply connected) occupied by an isotropic, elastic medium.4
Further, let U{ , a,,- , X, and p denote, respectively, the displacement vector, the stress
tensor, the body forces, and the mass density all referred to a set of rectangular cartesian
coordinates x{ . Then, the equations of motion for the medium are

fii.i + X, = p d'UJdf, (2)
where comma denotes partial differentiation with respect to the space variables.

Let Bk denote a system of spatial differential operators such that when they are
applied to appropriate components of the displacement vector (written as Bk[Ui , U2 ,
t/3]), these quantities take on prescribed values on the boundary S and will be assumed
to have the product form g(x)f(t). Thus, if there are p boundary conditions, r(r < p)
of which are non-zero, the boundary conditions may be written as

, U2 , U3] = gk(x)f'(t)d'w on S, (3)

where 5{ is the Kronecker delta, and the indices k and I have the range k — 1, 2, 3 • • • p,
I = 1, 2, 3 • • • r. It is important to note that the notation Bk[Ul, U2, U?] does not imply
that the operators Bk are applied to the displacement vector U{ ; the Bk are applied
only to appropriate components of E/t [see for example Eqs. (23)].

We now wish to determine a set of displacement functions Ui which satisfy the
equations of motion throughout R, the boundary conditions on S, and the initial con-
ditions in R for all t < 0.

3. Development of the method. We introduce the transformation

U^x, t) = v\{x)f(t) + £i(x, t), (4)

where v\ denotes the /th displacement vector which will be defined presently. If we now
require that the functions v\ take the values Bk[v[ , vt , i4] = gkb\k) on S, it then follows
from (3) and (4) that the displacements £, must satisfy the homogeneous boundary
conditions , £2 , £3] = 0 on S.

A suitable choice of v\ may be made in various ways. Mindlin and Goodman [2]
represented v\ as polynomials with arbitrary constants which were then adjusted to
give the desired results. A more general method, which reduces to that of [2] for certain
classes of problems, is to choose v\ to be the displacements which satisfy the following
system of statical problems:

r,= 0 ini?,
(5)

Bk[v\ , vl2 , t4] = 0*(z)3«> on S,

where r',- is that portion of au which is obtained from the displacements v\ . Equations
(5) represent a system of (I) separate problems, each of which has been obtained from
the original problem [Eqs. (2) and (3)] by setting X< - 0, cfUi/dt2 = 0, replacing a-,,- by
t'h , and setting all f(t) = 0 except that f (() = 1 for each value of I in turn. Thus, each

^Actually, the medium heed not be assumed to be isotropic. I11 fact, the subsequent analysis is valid
whenever the medium possesses a strain energy function which is positive definite.
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of the r sets of v\ satisfy the same equilibrium equations but different boundary con-
ditions. In the special case where the boundary conditions are all displacement conditions
(no surface tractions), this procedure coincides with that used by Herrmann [3].

Due to the manner in which the boundary conditions appear in (5), it is possible that
the region R is not in statical equilibrium. For example, consider R to be a beam pinned
at one end only and acted upon by an oscillating couple such that the beam rotates
about the pin. The corresponding statical problem characterized by (5) is a beam pinned
at one end only and acted upon by a constant couple; it is evident that the beam is not in
statical equilibrium. This difficulty is easily resolved if we interpret statical equilibrium
according to D'Alembert's principle. Thus, if the region R is undergoing rigid body
motions due to the tractions on S, it is sufficient to add to the first of (5) those body
forces necessary to insure equilibrium. We shall denote these body forces by Q\(x). In
general, there will be one set for each of the (I) separate problems. The necessity for
introducing the forces Q\ is really a consequence of the manner in which the v\ were
chosen.

In what follows, it will be assumed that the displacements v\ are known. In view
of the character of the transformation (4), the displacements are the solutions of a
forced vibration problem with homogeneous boundary conditions. In keeping with the
classical approach to such problems, we assume £,• to have the form

f.(z, t) = u"(x)qn(t), (6)

where u" are the normal modes of the associated free vibration problem and the functions
qn(t) are the generalized coordinates, as yet undetermined.

Before proceeding further, it is advantageous to deduce certain relations associated
with the normal modes. To this end, let ij,(x, <) in the form

m = E«:(x) exp [(-l)1/aaW] (7)
n

be the displacements which satisfy

Sn i — P d2tii/dt2 in R,
(8)

Bk[yi , fa , i?s] = 0 on S.

Equations (8), which serve to determine the normal modes and the natural frequencies
, are obtained from (2) and (3) by putting X{ = 0, replacing [/,• by ??,■ , by Sit ,

and setting all f\t) = 0.
The kinetic energy associated with 57; is given by

T = % J p{dT]i/dt){dt]i/dt) dV (9a)

and in view of (7), the maximum kinetic energy corresponding to the nth normal mode is

T„ = K f pu'r'u^ dV. (9b)
Jv

The normal modes, in addition to (9b), also satisfy Clebsch's [4] orthogonality conditions

f pu"u? dV = 0, (n ^m). (10)
Jv
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With the aid of (7), the first of (8) can be written as

£ = -po&C , (lla)
n

where S{j is that portion of the stress tensor <r,, which is determined from the nth normal
mode. If Eqs. (lla) are now multiplied by u™ and integrated throughout R, there results
for each n

f dV = -«?„> f puW dV (lib)
J v J V

which, by (9b) and (10), becomes

[ u"Sli > dV = 0 forn m
(12)

= —2T'n forn = m.

As will be seen shortly, Eqs. (12) play an important role in the determination of the
generalized coordinates.

Substituting (4) into (2) and with the aid of (5), (6), and (8), Eq. (2) will appear as

r!,„■/'(<) + S:,.,qn(t) + X< = pv\ d2f/dt2 + pul d2qjdt2 , (13)

where, according to (5), the first term on the left hand side of (13) is either zero or
~ depending on whether the region R is in statical equilibrium or not. The
differential equation governing qn(t) is now obtained by multiplying (13) by u", integrating
over the volume V of R, and using (12) with the result

+ <-(„>?» = / - pv\jf- Q!/'] dV/ fv dV (14)
the general solution of which is

1 r'
qJJ) = An sin u{n)t + Bn cos aMt -| / P»(t) sin wCn)(< - t) dr. (15)

W(„) Jo

In (15) An and Bn are constants and P„(t) represents the right hand side of (14). If the
initial conditions are

Ui{x, 0) = Uia{x), dUi(x,0)/dt = U'i0(x), (16)

then, with the aid of (10), the following expressions for An and Bn are readily deduced:

An = jr dV/<000 Jr dV,

pu:[Ui0 - v[fm dV / pu?u? dV.
(17)

This completes the formal solution of the problem. By way of recapitulation, the steps
leading to the solution of the problem under consideration are: (a) assume that the
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displacements are given by (4) and (6); (b) determine the displacements v\ by solving
the system of statical problems defined by (5); (c) solve the free vibration problem
obtained by setting X( — 0 and f'(t) = 0 in (2) and (3); and then (d) evaluate the
integrals appearing in (15) and (17).

It may be noted that whenever the boundary conditions involve simple harmonic
functions of time, the above procedure can be modified slightly. In such cases it is con-
venient to choose v\ to be a set of steady state solutions corresponding to each time
dependent boundary condition. This modification simplifies the results somewhat.

4. An example. Consider a rectangular beam of length L, thickness h, and width b.
Let the beam be referred to a set of cartesian axes x{ with the length measured along
X, , while x2 is positive downward; the origin of x( is placed at the centroid of the left
end section. The beam is assumed to be simply supported and is driven by a step-
moment at the left end; the step-moment is the product of a constant moment M„ and a
unit step function in time.

The equations which govern the motion of such a beam are obtained by assuming
that the non-vanishing stresses are <r„ and <r,2 and that these are functions of Xx , x2 and
t only. We also assume that the bending stress au varies linearly across the thickness.
A set of displacements which are consistent with the last assumption, are

Ui = XiHh , t), Uj = w(x, , t). (18)

The equilibrium equations and the stress displacement relations which may be readily
obtained from the general equations of elasticity (see, for example, Ref. [5]) are

dM 0 j §jt
aXl Q ~ pI ae '

dQ_ _ cfw
dXt p dt2

(19)

and

Af-E/fi, Q-Aa(* + §), (20)

where the bending moment M and the shear force Q are defined by

P+V3 -+V 2

M (TuX2 dx2 , Q = b <r12 dxt . (21)
-A/2 J-h/2

In (19) and (20), E is Young's modulus, n is the shear modulus, I = bhz/12, A is the
cross-sectional area, and k is a constant whose physical significance has recently been
discussed by Mindlin and Deresiewicz [6], but need not concern us here. The substitution
of (20) into (19) yields the following two differential equations for ^ and w.

nr d*yp ii(. i duA T d1 if/

(22)
,(dt , d"w\ _
\3xi dx\)

= pA ,



48 J. G. BERRY AND P. M. NAGHDI [Vol. XIV, No. 1

which are generally attributed to Timoshenko [7]. Also for the example stated, the
boundary conditions are

BJx**, w] = w(0, t) = 0, B2[x2i, w] s EI = M0f{t),

BM, w] = w(L, t) = 0, BM, w] ̂  EI = 0; }

m =10
11

for t < 0

for t > 0.

According to Eqs. (4) and (6) we take and w as

x»$ = vj(t) + u"qn(t),

w = vj(t) + u2qn{t),

where Vi and v2 satisfy the equilibrium equations

^^fr1 -4"w+&-0-
d(x2lvi) , d\2

and the boundary conditions

(24)

(25)

dxi dx\

B1[vi , v2] m v2(0) = 0, B2[Vl , v2] m EI ^2;(Q)) = Mo

B^v, , v2] = r3(L) = 0, B4[v, , v2] = = 0.

(26)

It can be readily verified that the following expressions for v, and v2 satisfy (25) and (26):

_ _ A. . _ _J_ feY _ 1
2L2 + L If A \cj 3 '

EI_ „
M0L 1/1 2L2 r L L2yl Vc2>

£7 _ , x,
U2 Ct2 or~TQ»

(27)

M0L 6L 2L 1 3
where

2 B , 2 7 MCi = — and c2 = k - •
P P

The normal modes wl and u\ which satisfy the equations5

EI ^4^ - m^{(x2-^) + g} = -pIul(x~M),

Jd(x2'u") d2u2\ 2
»kA\-te~ + ^?J = ~pAw"U> •

(28)

6In the remainder of this section the summation convention is suspended for the index n only.
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and the boundary conditions
u"(0) = u"(L) = 0

djxi'uKC))) = d{x^Ui(L)) _ Q
dxi dXi

(29)

are
— 1 n sy nirx, n T\ ' VlTTXti /*JtWx2 ux = Gn cos —, u2 = Dn sin —• (30)

Substitution of (30) into (28) yields

+ ukA - p/c^] + Z)n[|xfcA = 0,

(31)

from which

or

<? ] + »■[(?)'" (t)']"

«>» — (ci ~l~ c») ~t~ ~j c2 J*°» + (l~) c'c^ = (32a)

«4 « | [(f + Ca) + j <] ± {[(^)2(c? + C°) + J - 4(f )4^}1/2 • (32b)

There are two frequencies for each mode shape which correspond to the presence of two
non-zero components of the displacement; they will be denoted by unI and w„2.

If we return to (28) and (29), we may observe that these equations are also satisfied by

xilu\ = Co , u\ = 0 (33)

provided ul = A/Ic\ ; u\ is the so-called "thickness shear mode". The notation is not
meant to imply that the lowest frequency is co0 ; in fact, this frequency is quite large.

When (31) are solved for the ratio of the constants, the normal modes take their
final form as

_i „ nirx, „ (nvL)cl . nwx,
x2 — cos j j u2 — 2 j 2 / \2 sin y (34)

L 0)nL — (rnrC2) L

and the shear mode becomes x~l 'w? = cos co0t. The solution will be complete when the
integrals appearing in (14) and (17) are evaluated. Since f(l) is the unit step function
d2f(t)/dt2 = 0, df(0)/dt = 0, and /(0) = 1. Hence, P„(<) = 0, and if we choose the initial
conditions to be zero, the only non-vanishing constants are B„ given by

Bn = - [ [§1^ +J dXl/ (u:r + dx,. (35)

Upon evaluating the above, we find after some manipulation

- -2M, - -a-(fe)' - (l)1],

{fe)' - (!)']• (36)
Bn 2 — 2(o>ni 0)n2)
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Finally, combining all of the above results, we have

EI _ Xj jt_
M0L L 2L2 V A \c2

? I (cX 1 , 7c,

— 2 2 (<*>»! — wit) 1 cos mrxi
L m-(in—

EI
M0L w

- _te)' - (!)']«"-'}• (37)
Xi x2t , x\ , nc*cl ^ , 2 2n_! nxa;, [cos o>„, 2 cosco„2<|= -5--^7 + ^73 + 2 -72 2^Ki- w»2) nir sin —j-  2 2— .3 2L 6L L L' L wn2 J

This example has been solved previously by Leonard and Budiansky [8], using the
method of Laplace transform. Equations (37) may be regarded as the "indicial ad-
mittance" for this boundary driven problem. We could combine these results with
Duhamel's integral to obtain the solution for a much more general forcing function.

5. Concluding remark. In the case where the non-homogeneous boundary con-
ditions involve surface tractions only, it is possible to obtain a formal solution by using
Lagrange's equations of motion, such a solution is assumed to have the form given by
(1) while the surface tractions are incorporated into qn(t) through the generalized work.
Thus the solution obtained in this manner will never satisfy the required boundary
conditions of the problem, as may be seen from the fact that m" satisfy equations of the
type specified by (8).

Since the normal modes satisfy the homogeneous boundary conditions, it becomes
necessary to establish the validity of the solution by showing, through a limiting process,
that the solution satisfies the non-homogeneous boundary conditions as the boundary
is approached from the interior of R. This process, quite often, requires that the solution
also be obtained by another method, such as the one given in this paper.

It may be mentioned that a similar situation may also arise in connection with the
use of the integral transform methods when the solution is expressed in terms of a con-
volution integral.
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