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ON A GENERALIZATION OF TAYLOR'S VIRTUAL MASS
RELATION FOR RANKINE BODIES*

BY

L. LANDWEBER
Iowa Institute of Hydraulic Research, State University of Iowa

1. Introduction. In 1928 G. I. Taylor [1] published a relation which expressed
certain added mass coefficients of a moving body in terms of the singularity distributions
which may be considered to generate the flow field about the body. This relation had
the great advantage that, for Rankine bodies (i.e. for bodies generated by prescribed
singularity distributions) these added masses could be computed directly from this
relation without the necessity for the evaluation of the usually cumbersome expressions
for the added masses as surface integrals in terms of potential functions. A derivation
of Taylor's formula has also been given by Lamb [2].

In 1950, in his Hydrodynamics [3], Garrett Birkhoff casually included a generalization
of Taylor's result. Recently, in the course of a seminar on added masses at the Taylor
Model Basin, a new derivation of Birkhoff's generalization was obtained by the present
writer which, furthermore, resulted in a simple and elegant interpretation of a term
which Birkhoff had left as a surface integral. These results will now be presented.

2. Kinetic energy of a rigid body. Consider a rectangular Cartesian coordinate
system (xi, x2, x3) fixed to the body with origin at a point 0. The motion of the body can
be described in terms of the vector velocity of translation U of 0 and rotation of the
body with vector angular velocity w about 0. Let us denote the components of U by
Ui , u2 , u3 and the components of w by w4 , ub , w6 . Let a denote the mass density of
the body and r the position vector of a point of the body with respect to 0.

In vector notation the kinetic energy 71] of the body may be written in the form

2T, = J cr(U + w X r)1 dr, (1)

where dr is an element of volume of the body and the integration is taken over the
volume of the body. By expressing (1) in terms of the components of the vectors, the
kinetic energy can readily be expressed as a quadratic form in the velocity components [4]

221, = X) S MijUiU, ,
t-1 |-1

M{j = M,i ,
i¥„ = M22 = M33 = M, the mass of the body, (2)

M23 ~ M3\ = M\% M\i = j\£ 25 = MM = 0,

Mi6 = —M3S = Mx[ ; M3i = —Ml0 = Mx'2 ;

Mlt — M2\ = Mx3 ,

where
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where x{ , x2 , x3 are the components of the center of mass of the body, M4i , Mss, M69
are the moments of inertia of the body about the x, , x2 , x3 axes respectively, Mst ,
M6i , M4S are the negatives of the cross products of inertia about the xx , x2 , x3 axes
respectively, viz.

M5 = — J ax2x3 dr, etc.

3. Kinetic energy of the fluid. It will be supposed that the body is moving through
an inviscid, incompressible fluid, extending to infinity in all directions and at rest at
infinity, and that the motion in the fluid is entirely due to that of the body. Then there
exists a single-valued velocity potential 4> which satisfies Laplace's equation

V2<t> = 0 (3)

and the boundary condition on the surface of the body

-g-CO + wXD-n, (4)

where n is the unit vector normal to the surface of the body, directed into the fluid. Let
nx , n2, n3 denote the direction cosines of the normal. Then the boundary condition (4)
may also be written in the form

d<t>
~dn=£[niU" (5)

where

n4 = x2n3 — x3n2 , ns = x3ni — xxn3 , na = xxn2 — x2n, , (6)

i.e. n4, n5, ne are the components of the vector r X n.
Because of the linearity of Laplace's equation and the boundary conditions, we

may now make the Kirchhoff assumption that
6

<£ = • (7)
• -1

Here is the velocity potential when the body has only the one component of motion,
Ui , and that of unit magnitude. From (5) and (7) we obtain the boundary conditions

Let T2 denote the kinetic energy of the fluid and p the density of the fluid, assumed
to be uniform. Then we have

where the integration is taken over the surface of the body. From (5) and (7) then
6 6

2T2 = X) H AfjUiUi , (10)
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where

A a = p JJ </>,n, dS (11)
are the added masses of the fluid. It may also be shown that

A„ = Ait . (12)
The foregoing brief review of the theory of added masses is essentially a summary

of the treatment in Lamb's Hydrodynamics [5].
4. Taylor's formula and Birkhoff's generalization. Taylor's formula may be written

in the form

Afi + M = 4irp/i,, , i = 1, 2, or 3,

where is the tth component of the total dipole moment of the sources and doublets
which give the flow about a body translating in the ith direction, and M is the mass of
the displaced fluid. Birkhoff's generalization [3], in our present nomenclature, becomes,

A a — p ff dS = ^Pf-u > * = 2> or 3;i = 1,2, • • • , 6,
where /*,, is the tth component of the dipole moment of a body corresponding to a j-com-
ponent of motion of translation or rotation, and the surface integral is taken over the
surface of the body.

Birkhoff derives his generalization by applying Green's reciprocal theorem to
Xi^dcfrj/dn) — 4>,{dXi/dn) for a region bounded internally by the body and externally
by the surface of a large sphere. Lamb [5] derives Taylor's formula by equating
asymptotic expressions for the potential, given first in terms of the added mass, and
then in terms of the dipole moment. It is shown in the following sections that Lamb's
method can also yield Birkhoff's generalization, and furthermore that the term con-
taining the surface integral is simply ikf4, , the corresponding component of the mass
tensor (2), for a = p.

5. Asymptotic value of potential at a great distance from body. Let r denote the
position vector of a point on the surface of the body with coordinates xx , x2 , x3 , and
R the position vector of a point P at a great distance from the body, with coordinates
£i , £2, £3 • Let R be the magnitude of R and Ri the magnitude of the vector R — r, i.e.
the distance between P and a point on the surface.

The potential at P is given in terms of the values of the potential and its normal
derivative on the surface by the well-known formula [6]

**'-!! [*£(£)-&%]**■ (13)
Let us expand 1/Ri in a Taylor series. We obtain

1 1 + #2^2 Xzfez | /1
J? ~~ J? •" T?3 I * * *it 1 il t\j

and, from (14)

A (l^\ _ (n + n sL. <n _ rc.Si + n2k + n3£3 , ^
dn \rJ ~ V 1 to, + 712 dx2 + "3 dxj ft, ~ R3 + (15)
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Then, from (7), (11), and (15)

II4>i(£)dS~w-II t,"■*' t dS
or

(16)

Also, from (14)

If - H*8* If-<s + * + g + *■)£«•
But // — (d4>/dri)dS = 0 since the total flux of velocity through a closed stream surface
is zero. Hence, from (5),

II ~ ̂ dndS ~ J5 II u,rii X'^ dS ~W6 ̂ ^ UiIIn<Xi dS' ^
But for i = 1, 2, or 3, Gauss' transformation gives

ffna.dS- JJf %<!">,,V, (18)
where 5,-, is the Kronecker delta and V is the volume of the body. When i = 4, however,
we obtain from (6)

JJ n4Xj dS = JJ (x2x,n3 — x3x,n2) dS,

0 if j = 1

= JJJ (x2Si3 — x3Si3) dr - • —X3V j = 2, (19)

.x'iV j = 3

where x[ ,x'2, x'3 are the components of the position vector of the centroid of the volume
of the body. Comparison of (18) and (19) with the values of Mit tabulated following
Eq. (2) shows that, when the body is of neutral density (<r = p),

p JJ nM dS = Ma , i = 1, 2, • • • , 6, j = 1, 2, 3. (20)

Hence, substituting the results in (16), (17), and (20) into (13), we obtain

4wpRs<t>P ~ E Z . (21)
<-i 1-1

Now suppose that the flow due to unit value of the ith component of the motion is
generated by a set of sources Cmi and a set of vector doublets dn< with components
dnii, dni2, dn,|3. Then the potential at a point P due to this system of sources and doublets
is
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*p = £ Sp5*). (22)
i —1 * m n **/n» •

where Rmi is the distance from the with source to P, R„, the position vector of P relative
to the nth doublet and Rni the magnitude of Rni . But, from (14)

1 _1 , + xm2£2 + xm3£3

Rni —R'1' R3

where xmt , :tm2 , x„3 are the coordinates of the with source. Also

Ej = |?c"i = 0
since the totality of sources generating a closed body is zero. Furthermore the last term
in (22) becomes asymptotically

d„. • R„ ^ dni ■ R _ dnii^j
J?3 — P3 T?3tlni tl ,»! K

Hence we obtain from (22)

Ztd Cmlxm, + E dnii)u^ . (23)
i"l }"1 to n

6. Relations between added masses and singularity distributions. Finally, com-
paring the asymptotic values of the potential in (21) and (23) we obtain the desired
relation between the added masses and the source and doublet distribution

An + Ma = 4tp(£ Cmixmi + £ d„a) (24)
to n

i = i, 2, • • • 6, j = 1, 2, 3.
It should be noted that Eq. (24) does not give relations for all the added masses.

The six terms due to pure rotation, such as Ai4 , A4S , are not given. Attempts to find
such relations, either by taking additional terms in the asymptotic series for the potential
or by using Birkhoff's method [3], have given numerous results which resemble but are
not quite the ones sought. Thus, although a relation for = // <l>i(x2n3 — x3n2)dS
has not been found, it can be shown that

JJ <t>i(x2n3 + x3n2) dS + JJJ (x2 — x3) dr
= 4ir[X) Cmixm2xm3 + X) (dm2xn3 + rfni3.fn2)], (25)

to n

where the volume integral is taken over the volume of the body and xnl, xn2, xn3 are the
coordinates of the nth doublet. It is interesting to compare the term Mti = /JJ"
{x\ + xl)dr, which would occur in Eq. (24) if it could be applied for j = 4, with the
corresponding term in (25). Also it has been found that, although a relation for AiS = JJ
<t>b(x2n3 — x3n2)dS has not been found, we have

JJ <t>s(x2n3 + x3n2) dS — JJJ XiX2 dr
= 4ir[^ Cm5xm2xm3 + (dnS2xn3 + dn53xn2)]. (26)
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In this case the term ilf45 = — /// xix2dr occurs explicitly. These relations suggest certain
guesses as to how (24) may be generalized, but we will refrain from mentioning them
until some evidence for their validity is adduced.
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