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Equation (3) states that the spatial rate of change of the distribution function
2V(r, s) at the position r, in the direction of the unit vector s, is due to three effects which
appear on the right side of the equation. They are, in order of their appearance, first,
radiation lost through absorption, and scattering out of the direction s; secondly radia-
tion which is scattered from all 4ir solid angle into the direction s. p(0) is the angular
differential cross section for the specific process involved. Thirdly there is the source
contribution <S. It is assumed in the above equation that a scatter is not accompanied
by a change in wave length, n is the total narrow beam absorption coefficient.

When the solution of (3) is through expansion processes, Eq. (2) becomes a useful
integral formula for reducing the integral of (3) to its equivalent summation.

For instance, consider the problem which permits the unit vector s to be replaced
by the ordinate angle 6 (e.g., spherical symmetry and infinite plane source). In this case
the distribution function may be expanded as

N(t, s') = £ ai(r)pi(cOS 6'). (4)

Substitution of this expansion into the kernel of (3) will transform the original
integral into a series of integrals, each term of which is similar to expression (2). From
this we may write for the integral of (3),

?^^ai(r)fc,P,(c0S e)' (5)

ki is the Legendre coefficient of the expansion of p(/3).
Following this with the replacement of N(r, s) by its equivalent expansion (4) into

(3), will reduce the original integro-differential transport equation to a system of differ-
ential equations involving the sequence {at (r)}, knowledge of which completely deter-
mines N(t, s).

For more complicated geometries, where expansions in tesseral, or spherical surface
harmonics are called for, the formula may be used in like manner, reducing the integral
term of the transport equation to its corresponding summation, whence usually, a
reduced system of equations is easily derivable.

TWO REMARKS ON HEISENBERG'S THEORY OF ISOTROPIC TURBULENCE*
By WILLIAM H. REID1 (Trinity College, Cambridge, England)

1. Introduction. The exact dynamical equation for the rate of change with time of
the energy spectrum function E(k) in isotropic turbulence may be written in the form

dE(k)/dt = T(k) - 2vk2E(k), (1)

where T(k) is the transfer function usually denoted by this symbol. The incompleteness
of Eq. (1) is well known and, in the past, several so-called "physical transfer theories"
have been proposed in which a further relationship between T(k) and E(k) is postulated;
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the specific form of the relationship then follows from the particular mechanism of
energy-transfer considered and from certain general dimensional considerations.

The theory which has attracted the greatest attention is the one due to Heisenberg [3]
and is based on the concept of an eddy viscosity; in this theory T(k) and E(k) are related
by an equation which may be written in the form

T(k) = -Ik Jt J [E(k')/k'3]l/2 dk' J* k"2E(k") dk". (2)

In this equation, k is, by hypothesis, a constant of order unity. A number of writers
have attempted to derive the value of k under widely differing conditions and, in par-
ticular, existing results show a large variation of k with the Reynolds number of the
turbulence.

One of the purposes of the present note, therefore, is to show that these results are
partially in error and that in fact k, or more precisely the ratio S/ k, where S is the
skewness factor of —dUi/dxi is practically independent of the Reynolds number and
thus to remove one cause for criticism of Heisenberg's theory.

2. The behavior of S/k for small values of the Reynolds number. Since S is directly
related to the second moment of the transfer function, one must first derive the explicit
solution for T(k). For small values of the Reynolds number, this can easily be done by
expressing the solution as a power series in the Reynolds number. Thus, by assuming
the usual type of initial period similarity

E(k, t) = K~V/2t-l/2F(x) and T(k, t) = K~V/2f2/2U{x), (3)

where x = (vk2t)1/2, Eqs. (1) and (2) become

xF'(x) + (4x2 - l)F(x) = 2U(x) (4)
and

U{x) = -2 ~ J [F(x')/x'3]l/2 dx' jT x"''F(x") dx". (5)

From Eq. (5) it is clear that for small values of the Reynolds number U(x) is of higher
order that F{x) and since , the Reynolds number of the turbulence usually denoted
by this symbol, always occurs in the combination kR\ , we may write

F(x) = E Fn(x)(«R,y and U{x) = £ Ua(x)W- (6)
n—2 n-3

By substituting these series into Eqs. (4) and (5) and equating like powers of kR* ,
one obtains a sequence of equations for the determination of the functions Fn(x) and
Un(x). In particular, the first approximation to each of these functions can be readily
obtained in the form

Fa(x) = fxe"21' (7)
and

U*(x) = | (I)3" £ Ei (-z2)[l - (1 + 2*V2H, (8)

where — Ei(—x) is the exponential integral function defined by

-Ei (-*) = fJ x

" e~'— dt.
f
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These functions are shown graphically in Fig. 1. In passing, it may be noted that F2(x),
unlike U3(x), is independent of the assumed form of the transfer theory.
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Fig. 1. Curve 1: The 'zero Reynolds number' energy spectrum, F2(x); independent of transfer theory.
Curve 2: The first approximation to the transfer function, 10f73(a:); Heisenberg's transfer

theory.

For small values of the Reynolds number, the ratio S/ k is then given by

^ = 400 r x%T^{x) dx + ow (9)
K /Jo

For the transfer function (8), the integral occurring in this equation has the value

I ^3(x)dx = ^-(l-logs)
and hence

S/k-*0.78 as R\ —> 0. (10)
Experimentally, we know that S 4= 0.48 at the smallest Reynolds number for which
experiments have been made [2, Fig. 6.3] and this makes k =f 0.62. The numerical
coefficient in Eq. (10) differs considerably, however, from the one given by Proudman [6].
Presumably, his result was obtained by expanding U3(x) in powers of x; in view of the
somewhat peculiar behaviour of this function, the present method of using the exact
form for U3(x) in closed form is obviously more reliable.

3. The behavior of S/k for large values of the Reynolds number. For sufficiently
large Reynolds numbers for which a universal equilibrium exists, the relation

[ k'Eik) dk
5 = 1(30)^^ ^ ; (11)

I J k2E(k) dkj
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is exact; under these same conditions, one may therefore use Bass' equilibrium spectrum
to evaluate the behaviour of the two integrals occurring in this equation. This is the
procedure used by Lee [5] who found that, as approaches infinity,

S/k-^ 1.52. (12)

In the course of the present investigation, however, it was found that when Kx equals
infinity, the behaviour of S/ k is singular with a value which differs from the one given
by Eq. (12) and this fact, in itself, may not be without interest.

Thus, when R\ equals infinity, the ratio S/ k can be determined by comparing the
asymptotic form of the spectrum given by Kolmogoroff's universal equilibrium theory
with the corresponding form given by Heisenberg's theory. For sufficiently small values
of r, Kolmogoroff's prediction for the double correlation function (see, for example,
[1, p. 85])

2(u')[l - f(r)] = (4/5<S)s/3(«r)2/3, (13)

where (u2) is the mean square value of one component of the velocity, e is the rate of
viscous dissipation and /(r) is the double velocity correlation coefficient usually denoted
by this symbol, leads to the equilibrium spectrum

and this is to be compared with Heisenberg's form of the equilibrium spectrum

E(k) = (8/9K)2/Y/3r5/3. (15)

By equating the coefficient of t/3k~B/3 in these two expressions, one obtains

§. = J_ f 55
k 810 LU/3)

~|3/2,J 60 (16)

and this then is the value of S/ k when /ix equals infinity.
From a physical point of view, the correct limit is of course the one given by Eq. (12),

and when this value is used in conjunction with the experimentally determined value
of S for large values of the Reynolds number, about 0.30 [1, Fig. 6.3], we obtain the
value k 4= 0.20.

4. Conclusions. The implication of this discussion then is that the ratio S/k varies
between 0.78 and 1.52 as the Reynolds number varies from zero to infinity and, from
the nature of the theory, it is reasonable to suppose this variation to be monotonic.
Furthermore, when the experimentally observed variation of S with the Reynolds
number is taken into account, it is found that k then varies between about 0.62 and
0.20, which neatly bracket the value (0.45 ± 0.05) suggested by Proudman [6] from his
study of the correlation functions. It thus appears that the variation of k with the
Reynolds number is relatively small and cannot be said to constitute a serious criticism
of Heisenberg's transfer theory.

Acknowledgement. I am indebted to Dr. G. K. Batchelor for his helpful discussion
of the present work.
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NOTE ON LINEAR PROGRAMMING*
By CARL E. PEARSON (Harvard University)

Statement of theorem. Consider a set of m linear equations in n unknowns x< ;

dajXj = ba , (1)

where Greek indices range from 1 to m and Latin from 1 to n. The usual summation
convention on repeated indices is used; aai and ba are constants. Linear programming
is a method of obtaining a solution (if it exists) of Eq. (1) satisfying in addition the
requirements

Xi > 0, all i, (2)

CjXj = minimum, (3)

where the c,- are constants. The fundamental theorem used in the simplex method of
Dantzig (1) is that if one solution exists, then an equivalent solution can be found in
which not more than m of the x{ are non-zero; further, those columns of the matrix
(a«f) which correspond to such non-zero (x.) will be linearly independent. The usual
proof of this theorem (e.g. Ref. (2)) involves tedious geometrical considerations in
n-dimensional space; it therefore seems worth-while to point out that a simple direct
proof exists.

Proof of theorem. Suppose (x-) satisfies conditions (1), (2), (3). Some—perhaps
all—of these (x-) will be non-zero; say for example that x'2 , x'3 , x'e , are alone not zero.
If firstly the corresponding columns (aa2 , aa3 , a„6) were linearly dependent, then a
set of three constants K2 , K3 , K& (not all zero) would exist such that

A(K2aa2 + K3aa3 + K6aa6) = 0, all a (4)

for any arbitrary constant A. Then because of Eq. (4), the new set (x'') defined by

x'i = x- — AKi for i = 2, 3, 6,
(5)

x[' = 0 for other i

satisfies Eq. (1) and, for sufficiently small A, also Eq. (2). Clearly however c,x" < c,x'j
for appropriate A, unless

c2K2 + c3K3 + c6K6 = 0. (6)
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