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DISPERSION OF MASS BY MOLECULAR AND TURBULENT DIFFUSION:
ONE-DIMENSIONAL CASE*

BY

B. A. FLEISHMAN**
Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Md.

1. Introduction. If a solute is placed in a solvent in turbulent motion, it is dispersed
both by molecular and turbulent diffusion. We derive here, in a one-dimensional case,
a formula for the mean concentration of solute, as a function of x and t, in terms of its
initial distribution, the coefficient of molecular diffusion, and the statistical charac-
teristics of the turbulent velocity field.

The one-dimensional problem for the infinite domain is treated as follows. Using the
initial condition expressed by Eq. (2) below, an initial value problem (for the concentra-
tion of solute) is formulated for the diffusion-convection differential equation, Eq. (1),
which contains a rather arbitrary convection velocity v(x, t) which is a function of x
and t. The solution is obtained in the form of a perturbation series, by perturbing with
respect to the "magnitude" of the convection velocity, and the nth order term of this
series involves, besides the initial data and the coefficient of diffusion, an n-fold product
of convection velocity factors, each evaluated at a different point and time. This solution
is found to be valid at small dispersion times or for small intensities of turbulence.

Now let the convection velocity be a random (though still continuous and sufficiently
differentiable) function of x and t; that is, let it be a member of an ensemble of functions,
where the ensemble represents the turbulent velocity field. (This is the approach taken
in»the mathematical theory of turbulence.) When an ensemble average is taken of each
term of the previously obtained perturbation series, there results a power series repre-
sentation for the mean concentration in which the nth order term contains the nth order
correlation coefficient of the turbulent velocity field. This technique, of introducing
random functions into the theory of partial differential equations, is not a new one.
Kamp6 de F6riet, for instance, has treated several classical initial value problems with
random initial data (see [1, 2, 3]1).

The initial value problem is solved in Sec. 2. In Sec. 3 a physical interpretation is
given of a sufficient condition for uniform convergence of the perturbation series solution.
In Sec. 4 turbulence is introduced, in the manner indicated above, and in Sec. 5 the
following example is considered: dispersion at small times for initial distributions and
space correlation coefficients of Gaussian type.

The investigation described in this paper is now being extended in two directions.
On the one hand, the treatment presented here will be applied to the corresponding
problems in two and three dimensions. On the other hand, the formal operations em-
ployed here, especially those involved in the probability approach to turbulence, must
be justified.
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2. Solution by perturbation of the initial value problem for the diffusion-convection
differential equation. The one-dimensional equation governing molecular diffusion in
the presence of a convection velocity is

ds n d^s d(sv) . .
dt dx2 dx W

(see [4], vol. II, p. 593), where s(x, t) = concentration (mass per unit length) of dis-
persing matter, D = (constant) coefficient of molecular diffusion, v(x, t) = convective
velocity, assumed to depend on x and t in such a way that v, dv/dx and d2v/dx2 are
continuous in x and t together.

For later purposes we assume further that v(x, t), vx(x, I) and vxt(x, t) are uniformly
bounded in an infinite strip — oo <x<a>,0<t<to, i.e., that there are finite positive
numbers vm, vmx , and vZ , which are the least upper bounds of | v(x, t) |, | vx{x, t) | and
| vTX(x, t) I, respectively, for — co < x < m, 0 < t < t0 .

Consider the initial value problem consisting of Eq. (1) and the initial condition

s(x, 0) = /(x) (— oo < x < oo) (2)

in the domain —<» < x < °°, 0 < t < t0 . The function f(x) is a given non-negative-
valued function of x, twice continuously differentiable and uniformly bounded for
— co <£< oo.We introduce the dimensionless quantities

r = t/T, To = to/T, I = x/(TD)1/2, a(Z, r) = (TD)W2s(x, t)/Q,
(3)

4>(f) = CTD)u'f(x)/Q, 0 = (T/D)l/2V, co(f, r) = v(x, t)/V,
where T is some characteristic time for the diffusion process, Q — /(x) dx is the total
mass present in the system at t = 0, and V is some measure of the magnitude of the
convective velocity. In the case of a specific (i.e., non-random) convection velocity
v(x, i) we could let V = vm, while in the turbulent case we shall let V equal the root
mean square turbulent velocity.

In terms of these dimensionless quantities, the initial value problem becomes

(-<«<-. «<r<r.) (4)

, 0) = 0(f) (-0= <{<»). (5)

It follows from Eq. (3) and the definition of Q that

0© df = 1. (6)>
Assuming that the solution of (4) is expressible as a power series in

CO

t) = t), (7)
»-0

we find, after substituting this series for <r(£, t) in (4), collecting all terms on the left
hand side of the equation, and setting the coefficient of each power of Q equal to zero, that

f*J — c
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d"r, d (Tp _ _ ,Q,
~ a? ~ °' (8)

do-.' _ d'g, _ _ A f \ •   -t r> /q\^(w<r'-») 1.2, ••• (9)

The solution to (8) satisfying the initial condition (5) is

*o({, r) = f </>(£')r(* - r) dp, (10)
J — oo

where
r(f, r) = (4ttt)~i/2 exp ( —£2/4r) (11)

is the so-called fundamental solution of the heat-conduction equation (8). Furthermore,
<*o(£i t) satisfies the normalization condition

rd — C
r) df = 1. (12)

It can be shown, by the use of Duhamel's theorem (see [6]) and an integration by
parts, that when w(£, r) is uniformly bounded in — oo <£< 00, 0 < t < r0, a solution
of (9) which vanishes at r = 0 is given by

l»r z*00
'•(*> T) = " j„ Wr -Tr')]1/a L da■ (13)

where co and (r,_! are evaluated at [£ + 2(r — r')1/2a, r']. Thus when <r0 and <r<_i(i =
1, 2, • • •) are given by (10) and (13) respectively, the infinite series (7) solves the initial
value problem consisting of Eqs. (4) and (5) (provided this series and those formed
by differentiating it term by term converge uniformly in the infinite strip under con-
sideration; this question will be discussed in the next section).

If in (13) we introduce the new variable of integration £' = £ + 2 (r — r')1/2a, we get

<?.(£, r) = — Jq dr' j «(£', r'Vi-1(£', r') ^ r(£ — £', r — r') d£', (14)

where T(£, r) is given in (11); (d/<3£ means differentiation with respect to the first argu-
ment). Then since T vanishes at | = ± oo, it can be shown, by inverting the order of
integration, that /_« <r,(£, r)d£ = 0 for i = 1, 2, 3, • • • . This result, together with Eq.
(12), implies that solution (7) conserves mass.

3. Sufficient condition for uniform convergence and its physical interpretation. It can
be shown that series (7) and the series obtained by differentiating (7) term by term
converge uniformly in the strip —oo <£< °o, 0 < t < t0 when

V1/2

>(?)'
SK l.u.b. [| «(£', t') | + | <0{(f, t') | + | «{{(!', t') |]f < 1. (15)

— »<{. <a
0<t'<to

Using Eqs. (3) to translate this condition into physical variables, we get 4:(t0/Dir)1/2(vm +
v™ + v™) < 1, where vm, vmt , and i>« are defined following Eq. (1).

This means that the power series is a valid representation of the solution of the
initial value problem in the time interval 0 < t < t0 either (1) when for ta given arbi-
trarily, the bound on the convection velocity and its first two x-derivatives is sufficiently
small, or (2) when for an arbitrary uniformly bounded convection field (twice continuously
differentiable with respect to x), t0 is sufficiently small. In connection with case 2 (antici-
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pating the next section by taking a turbulent velocity field as our convection field) it
has been noted in [5], p. 99, in considering dispersion from a point source, that "the
effects of molecular agitation on the dispersion are not always negligible as compared
with the effects of turbulence; indeed, when the dispersion process starts, the former
effect is greater than the latter."

4. Application to turbulence. Now let «(£, r) be a random function (though still
possessing all the regularity properties with respect to £ and r previously assumed for
our convection velocity) with (co(f, t)) = 0 at every point (£, r). The case of a uniform
non-zero mean velocity, (co), can be reduced to the present case by introducing a new
space variable, y = £ — (co)t. The angle brackets denote an ensemble or stochastic
average. Thus we regard the convection (i.e., large-scale motion as compared -with the
molecular agitation) as arising from a turbulent velocity field with zero mean velocity.
It is further assumed that (co2(£, r)) is a constant independent of £ and r. For convenience
we set (u) = 1, which can be done by letting V = (v2)1/2, so that 12 is now proportional
to the root mean square turbulent velocity. (See the discussion following Eq. (3).)

Rather than a itself, we are now interested in the mean concentration, (a), which
we propose to find by averaging each of the terms in the series (7). Since <r0 , given by
(10), does not contain u, then (tr0) = <j0 . From (14)

t) = - dr' J w(£', t') r(£ — £', t — t') d£',
so that <ti is linear in w, and since (co) s 0, it follows that

<ffl(£, r)> - 0. (16)

Again, if we use (14) and the preceding expression for o-, , we have

«rj(£, r) = dr' J <o(£', r') ~ r(£ — £', r — r') d£'

x £ dr" <„(?", T">0(r', /o | r(r - r, r> - o dr.
Thus, <r2 involves a product of no's evaluated at different times and points and there-

fore, when averaged, will contain the second-order space-time correlation coefficient
of the turbulent velocity field. Introducing this correlation coefficient:

7-» /€. . t. N (^(£l J 7"l)w(^2 J ^"2)) / /%. \ ft. \\
«2(£l , Ti ; ?2 , t2) =  ^2j  = (<a(£i , Tjwfo , r2)),

we get from the expression above for <j2 ,

W£, r)> = [ dr' £ | r(? - £', r - r') d£' £ dr"

X /" R&', T'; £", t"K(£", r") | r(r - £", r' - r") d£'
(17)

Similarly, the expression for an involves a product of n co's, each with a different
argument, and so (<rn) will involve the nth order correlation coefficient of the turbulent
velocity field

RniZi , Ti ; £2 , r2 ; • • • ; £„ , rn) = (cofe , ti)w(£2 , r2) • • • «(£„ , T„)).
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Thus, when the power series representing (a) is known to converge, a knowledge of
all the correlation coefficients of the turbulent velocity field yields (a) exactly as a function
of £ and t, while if one knows the correlation coefficients Rn up through order n one has
(in principle, assuming that all the integrations can be carried out) an nth order approxi-
mation to (o-).

5. Example: Dispersion at small times for initial distributions and space correlation
coefficients of Gaussian type. We have seen that one situation in which the perturbation
series (7) actually solves the initial value problem is when, for a given convection field
(or class of convection fields), the time interval 0 < t < r0 is sufficiently small. Let us,
then, calculate expressions for a0(£, t) and (o-2(£, r)) at small values of r, for certain
initial distributions and correlation functions. (We recall that the first-order term,^),
vanishes.) In terms of the computation the restriction to small values of r is imposed
by the desire to approximate certain functions of r so that they can be integrated (see
Eq. (22) below).

Consider initial distributions of the form

</>© = (4ttt*)-1/2 exp (~f/4r*),

depending on the parameter r*. Then from (10)

<r.(|, r) = [4x(r + t*)]~1/2 exp + r*)]. (18)

(This is the distribution that would result from molecular diffusion of a unit mass con-
centrated at £ = 0, starting at time r = — r*.)

We assume that the turbulence is homogeneous and stationary, and furthermore
that the second-order correlation coefficient can be written as a function of the £'s times
a function of the r's:

«.({', T") = <R2({' - t' - t") = (R£(r - n«r(r' - r").
Finally we consider the particular class of functions

(Rf({) = exp (-f74b), (19)
with the parameter b. Without specifying (Rr , we assume that in the neighborhood of
r = 0 its rate of decrease is sufficiently slow so that for the small values of r under
consideration <Jt,(r) ^ 1 (since (R,(0) = 1). We shall, however, carry along the factor
(R, in the calculations until it is necessary to invoke this assumption, so that perhaps
some enterprising reader can find an explicit functional form for (Rr which will obviate
the approximations which are made at that point.

Under the foregoing assumptions, if we replace £" and r" by the new variables of
integration £2 = £' — £" and r2 = r' — r", Eq. (17) can be written

MS, r)> - - j^ /; T^yn £ <r - £> exp [- grr^]

X 4^ fo ^{%dT2 Jl -^,r - r2) exp (- £-)
(20)
d£:1 )

where dT/d£ has been obtained from (11). Inserting the expressions for cr0 and <Rf given
by (18) and (19) into the first integral to be evaluated,

r', r2) = J ~ b , r' - r2) exp (- dt; 2
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we find, after an essentially simple integration, that

S'b3/2r¥2!iTexpr_rWL^l3/2 exp ^ J.J'= B

where

D = t2(t' - r2 + r*) + 6(r' + t*). (21)

Next, we must evaluate

/r(r, O - 4^72 [ /&', r', r2) dr2

_ r' _ f r2(r. + &)1 , ,99.
" 4ir1/2 Jo £»3/2_ W L 4J) J 2 ' (22)

where Z) is given by (21). Since t> < r' < r << 1, (Rr(r2) ftrf 1. Then, by considering
different relative magnitudes for r, r* and &, we can simplify D and evaluate V in three
cases: (1) r <5C b, t* « 6; (2) t « 6, r « t*; (3) r « t*, b « r*. In each case we shall
evaluate /'(£', t'), then (see Eq. (20))

/&, r, t0 - H ({' - 0 exp [- ^ I /2)]r(r' T° (23)

and finally

Ma, r)) = — ̂ T72 dr'- (24)

Case 1: r <£. b, t* b. From (21), neglecting terms of second order in the small
quantities r, r', r2 and r*, we get D = 6(r + r*). We insert this expression for D and
(Rt = 1 in (22) to obtain

''"C"/, [- 4(r' + t*)] V
dr2

+ r*)*%3/2

«V
~ 47r1/2(r' + t*)3/2

Then, using this result in (23) and integrating gives

<*»[" J(7+-?)]-

72 " 47T1/2(r' + T*)3'2 £ I'd' - e «p [-<«r
/ (•   _^3/2

2" (T + t*)5/2 ^ ~ 2^t + T*^ exp [ 4(r + t*)]'

and at last from (24) we get

(^(f, t)) k2 - 2(t + t*)i r_ f i
(r + r*)5/2 P L 4(r + t*)J (25)16tt1/2

Case 2: r « 6, r r*. Now -D = frr* and

f r' ( £'2 \
4tt1/2t*3/2 i0 exp \ 4r*/ ^2 ■r =
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Proceeding as in Case 1, we find

MS, t)) = ^1/2 ~ T*v.— exp (26)

Case 3: t « r*, b « r*. Now Z) = r*(r2 + 6). By performing the successive integra-
tions indicated above (and using along the way the fact that r' « t <<C t*), we obtain
in this case

<*.(*, r)) = ll~2T2*C exp (- - 2b3/2[(r + b)I/2 - 6I/2]}. (27)

Remarks. 1. The expressions for (<r2) in Cases 1 and 2, given by Eqs. (25) and (26)
respectively, are quite similar in form; indeed, if in Case 1 we made the more restrictive
assumption that r <SC t* <£ b, (25) would reduce to (26). Equation (27), the result for
Case 3, however, is different from the other two: only in this case does b appear in the
expression for (<72). Thus (A2) = <r0 + ^2(<t2), the second-order approximation to (<r2),
does not depend on b when r <3C b, whereas in the absence of this assumption the expres-
sion for (A2) does involve b. (It should be noted that 6 is proportional to L2, where L
is the length scale of turbulence, the integral of the correlation coefficient from 0 to °°
with respect to x.)

2. If in Case 3 the more restrictive assumption that r <K b <3C r* is made, we get
(<r2) = 0, for

(r + 6)1/2 - bW2 = b1 ,(i+r -^ h"'[(i - s) - 0 - 2b
3. A comparison of Eqs. (18) and (25) shows that in Case 2 (<r2) = (r2/2)dcro/dr.

It is not clear what significance, if any, there is in this interesting relation.
4. Within the limitations of requirement (15), our sufficient condition for the validity

of the perturbation scheme, it can be shown that in the region of the £, r-plane where
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Fig. 1. Example of second-order correction to mean concentration at small times: {ati/t3 plotted as a
function of i from Eq. (26) with t* = 1.
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(A 2) is a good approximation to (0), Q2{a2) is much smaller than <r0 ■ (This is not surprising
since in perturbing with respect to the convection term, we assumed this term is small
in comparison with the others in the original differential equation.) It should be kept in
mind, of course, that sufficient conditions for a certain result flow out of the particular
mathematical technique employed, and often the result is valid under much broader
conditions. This is particularly true of perturbation methods. Nevertheless, even if we
limit ourselves to values of the parameters and variables which satisfy (15), the results
are of interest. Equations (25), (26) and (27) show that in all three cases, for given
values of b and r* and a fixed value of r, (<r2) is negative at |2 = 0, increases, with in-
creasing f, to a positive maximum, and then approaches 0 asymptotically as £2 —
This is illustrated in the figure for Case 2. The exponential factors in both cr0 and (<t2)
make them go to 0 as f —><*>, but the relative magnitude of (<r2), as compared with a0 ,
increases with £2; indeed, (<r2)/V0 becomes proportional to £2 as £2 increases. Adding
turbulence to molecular diffusion, then, "sweeps out" the initial distribution more
rapidly, and this additional dispersive effect assumes a particular functional form, at
least in this set of examples.
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