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DETERMINATION OF COEFFICIENTS OF CAPACITANCE OF
REGIONS BOUNDED BY COLLINEAR SLITS AND OF RELATED REGIONS*

BY

BERNARD EPSTEIN
University of Pennsylvania

1. Introduction. In the study of electrostatic field problems the principal objective
usually is to determine the potential and its gradient (the field strength) throughout a
given domain bounded by a system of conductors. Frequently, however, it is necessary
only to determine certain constants of capacitance. In this paper we consider the latter
problem for a certain class of plane domains.

Let D be a domain consisting of the entire plane with any finite number of slits
along a single line. Several formulas for the coefficients of capacitance of such a domain
are derived, two of which appear to be well suited for numerical computations. One
of these formulas is based on the explicit representation of the potential as the real
part of an analytic function [1] while the other formula has the feature of requiring a
knowledge of the potential only on the line containing the boundary components of D;
it does not involve any derivatives of the potential. A convenient method for determining
the field along the line containing the boundary components has been given by the
author in a previous paper [2].

Since the coefficients of capacitance of a domain are invariant under conformal
mapping, the formulas which are derived may be employed to compute the coefficients
of any domain which can be conformally mapped upon a domain D of the type described
above. This procedure can be applied to a certain class of domains which are of practical
interest. In these cases the mapping problem involves essentially only simply-connected
domains rather than multiply-connected domains. One particular case of interest, the
'bi-filar shielded cable' is considered in some detail, and as an illustration of the procedure,
the coefficients of capacitance are evaluated numerically for one such domain.

2. Regions bounded by collinear slits. We consider here the problem of determining
effectively the so-called coefficients of capacitance of a domain D consisting of the
extended (x, ?/)-p!ane with a finite number, m, of collinear slits, cut along what may be
assumed to be the ar-axis.

We recall the definition of these coefficients:

Pa = -fc^ds, (j, k = 1, 2, ••• , m), (2.1)

where w,, the harmonic measure of the jth boundary component, is the harmonic function
whose boundary values are unity on the ith component and zero on all other components
(the existence and uniqueness of this harmonic function is well known from the theory
of the Dirichlet problem); Ck is any curve, described in the positive sense, surrounding
only the fcth component; and 3/dn indicates differentiation in the direction of the outward
normal. As follows immediately from the Cauchy-Riemann equations, the p,k may be
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defined alternatively as the increment in the harmonic function vt conjugate to ut which
results when Ck is described once in the negative sense.

We also recall several important properties of these coefficients of capacitance:

Pa = Pki ; (2.2a)
m

Z Pik = o, j = 1,2, •• • , m; (2.2b)
i-1

Pa > 0; (2.2c)

Pik <0, j t* k. (2.2d)

The pik are, of course, conformal invariants. Hence we may assume that D consists of
the entire plane minus a finite number of slits lying on the x-axis, one of which extends
to infinity in both directions (see Fig. 1); this configuration can always be realized by

2 3

Fig. 1.

+ 00

a suitable inversion. It will be seen that this assumption eliminates the possibility of
any convergence difficulties. For brevity such domains will be called slit-domains. We
number the finite slits 1, 2, ■ ■ ■ , m — 1 from left to right; and the infinite slit is the with.

We proceed to derive various formulas for the quantities p, * which may prove useful
for numerical computations. First we shall employ the definition (2.1); later we shall
derive a formula based on the alternative definition given following (2.1).

Taking into account (2.2a) and (2.2b) we see that it suffices to determine the pfk
withj < to, k < to. Let /, (x) = u,(x, 0), so that, in particular, ff(x) = 0 for x < ax ,
x > bm . By the Poisson formula we have, for any point off the z-axis:

«,<*, V> - ^ I ({ L%% f (2-3>
We take as the curve Ck a rectangle with vertical sides passing through the gaps (ak, bk)
and (ak+1 , bk+l). It is easily found from (2.3), by differentiating under the integral sign,
that for any value of x satisfying ax < x < bm

du.jdUj
dx < 2A dy

OA
< ^2 , A = max (| at |, | bm |) (2.4)

(one uses, of course, the fact that | /, (£) | < 1). Hence as the horizontal sides recede to
infinity the contribution to the integral (2.1) from these sides vanishes, and therefore
(2.1) may be written as follows:

Pik I i ,k I]',k+1 , (2.5)
where

Ii.r = f ^dV> ar < x < br (2.6)

(of course pim = I, ,m - /. .O-
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We wish to rewrite 7,-,r in such a form as to involve only the values of u,- on the
x-axis, i.e., the values /,•(:r). If one expresses (du^/dx by differentiating (2.3), inserts
this expression into (2.6), and interchanges the order of integration, one obtains the
following expression for 7,-,r :

/,(£) dtI,i.r = \p / " , a, < x < br . (2.7)
^ J Ox s ^

Here the symbol P denotes the Cauchy principal value of the integral.
A second expression for 7,-,r is obtained by the following artifice. Since the right side

of (2.6) gives the same value for any choice of x in the rth gap, we integrate both sides
of (2.6) over this gap. Then we obtain

(6, - ar)Ii, = £ J ^ dydx.

Interchanging the order of integration [this is easily justified with the aid of the first
inequality in (2.4)] we obtain

r.i>r

(2.8)
(br - ar)Ii,r = J ~ dx dy = J {u(br , y) - u{ar , y)} dy

= tLJv1 {/01 /lft)[(i - br)2 + y2 ~ ({ - ar)2 + y2\ dy'
Now we interchange the order of integration once more, and obtain the following ex-
pression for 7,-,r :

' S — arC\ /*o m

Ilr= v(br - Or) L /'® In
br (2.9)

A third expression for 7,-.r is obtained as follows. Since /,(£) is continuous and /,'(£)
and In | (J — ar)/(£ — br) | are absolutely integrable, an integration by parts enables us
to rewrite (2.9) in the form:

Ii T = ir(b~— ar) C " Or) In | f - or | - ft - 6r) In |« - br |] df; (2.10)
the integrated term vanishes since /,-(ai) = /,■ (bm) = 0.

Equations (2.7), (2.9), (2.10), together with (2.5), give three formulas for the co-
efficients pik which employ only the values of u,- on the z-axis. These equations were all
derived using the definition (2.1) of pih. A fourth formula is obtained by using the alter-
native definition, as follows. It is shown in [1], Sec. 91 that the analytic function
Wj (z) = Uj + iVj must satisfy the condition

w'M = 7   ^ wi , (2-11)
- fl (z - ar)(z - &r)j

where Pj(z) is a polynomial, of degree not exceeding m — 2, with m — 1 real coefficients
which are uniquely determined by the conditions*:

+1, for r = j,

-1, for r=j+ 1, (2.12)

0, for r t* j, r j + 1.
*It must be remembered that the denominator of ic,(z) changes sign on successive intervals (a,, 6,).

J.br

w'(z) dz =
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(It is shown in reference [1] that of the m conditions (2.12) only m — 1 are independent.)
Now employing the alternative definition of pjk and taking for Gk the doubly-counted
fcth interval, one easily obtains from (2.11) the result

)■„, «.13)n («- «.)<£ - y}Va = =F2

where the ambiguity in sign is most easily resolved with the aid of (2.2c) and (2.2d).
Insofar as numerical computations are concerned, it would appear that formulas

(2.9) and (2.13) are especially suitable. While (2.13) has an advantage over (2.9) in
that integration is necessary only over a single interval, it involves the solution of the
system (2.12) for the coefficients of the polynomial Pj(z) and this may become laborious
for large values of m. In this case it might prove preferable to employ (2.9), obtaining
the function fs(x) to the desired degree of approximation by the method given in [2],
Sec. 6.

3. Extension to more general regions. Since the coefficients of capacitance are
conformal invariants, they may be determined by the method described above for any
domain which can be mapped conformally onto a slit-domain. A simple example of
such a domain is the entire (x, y)-plane slit along a finite number of arcs of a circle (see
[1], Sec. 92). By a suitable linear transformation we can map the circumference of this
circle onto the x-axis, thus obtaining a slit-domain.

Another domain to which this method applies is a domain bounded externally by
one circle and internally by two others. By a suitable linear transformation such a
region may always be mapped into a domain with the centers of all three circles collinear
(see Fig. 2).

Fig. 2.

Now suppose that the upper half of this domain, which is simply connected, is mapped
conformally by an analytic function f = f(z) upon the upper half of the {"-plane. Then
the upper halves of the three circles are mapped into segments of the real axis of the
f-plane, and the three segments of the axis of symmetry (AB, CD, EF) are mapped
into the remainder of the real axis. By the Schwarz reflection principle, the entire domain
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of Fig. 2 is then conformally mapped onto the f-plane with three slits along the real
axis, i.e., upon a slit-domain. A particular case of practical interest in the 'bi-filar shielded
conductor'. This case will be discussed in some detail in Sec. 4.

Closely related to the configuration of Fig. 2 is that of the plane with any finite
number of circular apertures the centers of which all lie on one fine (see Fig. 3). Each

Qo O
Fig. 3.

half of this region is simply connected. If, as before, we can make a conformal mapping
of the upper half of this region upon the upper half of the f-plane, then, as in the previous
case, the reflection principle immediately gives the mapping of the entire configuration
upon the w-plane with collinear slits.

The use of the Schwarz reflection principle to transform a region into one bounded
by collinear slits may prove of use in studying the electrostatic field created by an
electrified grid.

4. An illustrative example. In the case of the domains described in Sec. 3 it has
been shown that the problem of determining the coefficients pjk may be reduced essentially
to the problem of finding a mapping function for a simply connected domain, regardless
of the connectivity of the original domain. Since the simply connected domain in question
is bounded by parts of circles and straight lines, the required mapping can be obtained,
in principle, by solving a certain non-linear third-order differential equation which is
closely related to a certain linear second order equation (see [3], pp. 198-208). However,
in practice this fact is of little use, for these differential equations contain the so-called
accessory parameters of the domain, which cannot readily be determined except in the
most elementary cases. But for regions of the type under consideration, it might be
possible to overcome this difficulty with the help of some of the many approximate
conformal mapping techniques that have been developed.

Here, by way of an example, we shall consider a case of the 'bi-filar shielded cable'
which can be treated by elementary methods.

Referring to Fig. 4, let the radius of the outer circle be taken equal to unity (this
assumption does not reduce the generality), and let the points B, C, D, E correspond
to z = —0, —a, a, 13 respectively. By the mapping function

f = (a0)U2(z + i) (4.1)

the interior of the outer circle is mapped upon the exterior of the slit —2 (a/3)1/2 <
f < 2(a/3)1/2, and hence the domain bounded by the three circles is mapped onto the
f-plane minus the aforementioned slit and the images of the two interior circles. In
particular, if /3 1, so that the inner circles are small and located close to the center of
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the outer circle, then the mapping (4.1) may be approximated in the neighborhood of
the inner circles by the linear mapping

t - ^ (4.2)

Fig. 4.

which transforms the inner circles into circles which meet the real axis at ±0/0)1/2
and ±(j3/a)1/2. Hence the domain of Fig. 4 is mapped by (4.1) approximately into
the region indicated in Fig. 5. The centers of the circles in Fig. 5 are given by f = ±a,

{-plane

-(/?/a),/2V *2(a/3)"2 2(atf)"2 <a/jS)"2V hp/a)"*

Fia. 5.

where a = (a + /3)/[2(a/3)1/2J, and the radius of each circle is given by R = (3 — a)/
[2(a/3)1/2]. Since a2 — R2 = 1, the exterior of these two circles may be mapped upon the
exterior of two slits of the real axis by the function (see [3], p. 297, example 9)

w = 1 + /K1 + A/*1 ~ "1 (4 3)w i - m + mi - f), p] ' ^ ;
where

(0)'/2 ~ («)1/2
P - (0)1/2 + («)1/2

and

2 n a + psn_2<2) n a + p8n+2r2)
/(*, p) = 7 ^^  (4-4)

n (i + p8n+2o n a + p8n+et~2)
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(see [3], Chap. VI, Sec. 3, Eqs. (32) and (49)). The circles map onto the twice-counted
slits

and

respectively, where

1 + L(p) . . 1 — L(p)
'l-L(p)- ~ 1+L(p)"

1 — L(p) . . 1 + L(p)1 + UP) ~ w ~ 1 - L(P)

«„) - 2„ fl (4.5)
The interval — 2(<*/3)1/2 < f < 2(a/3)1/2 maps onto the infinite interval

I i > 1 ~ /[{I + 2(«0)1/2}/{l — 2(a0)1/2}, p]
1 ' ^ 1 + f[{l + 2M)1/2}/}l - 2(a0)l/2 J, p]

of the real axis. Thus the domain of Fig. 4 has been approximately mapped into a slit-
domain, and the formulas given there may be employed to determine the pih .

To give a numerical illustration, let a — 1/20, /3 = 1/5. Then p = 1/3, and, since
the infinite products (4.4) and (4.5) converge rapidly, one obtains very easily

TTW - °-212' - 4-726' (4J8
1 - /fjl +2(ag)1/2}/{! - 2(a0) }, p] _
I + fill + 2M)1/2}/{l - 2M)1/2}, p] -

In order to work with more convenient numbers, we employ the transformation

z - z, (4.7)

thus obtaining in the Z-plane a slit-domain characterized by the following numbers
(see Fig. 1):

ai = —8.1, bi = —4.5, a2 = —0.2, b2 = 0.2, a3 = 4.5, b3 = 8.1. (4.8)

On account of the low connectivity of the domain (m = 3) it was decided to employ
formula (2.13) to evaluate the pik . The coefficients p23 and p2i (the numbering of the
boundary components is given in Fig. 4 and Fig. 5, and is in accordance with the number-
ing given preceding Fig. 1) were determined as follows. The polynomial P2(Z), which
according to the discussion of Sec. 2 is of first degree, was replaced in (2.12) by the
quadratic polynomial aZ2 + bZ + c with unknown coefficients a, b, c. The integrals
appearing in (2.12) were computed by interpolation (the Tchebyshev five-point formula
was used) and the resulting system of linear equations was solved for the coefficients
a, b, c, with the following results:

a = -9.3 X 10-8, b = -1.962, c = -11.608. (4.9)
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(The radical appearing in (2.12) was taken positive on the first and third intervals and
negative on the second interval.) The extremely small value obtained for a, whose exact
value must be zero, serves as an excellent check on the accuracy of the computations.
The expression for P2(Z) thus obtained was then employed in (2.13), with the following
results:

p„ = -2.153, p22 = +3.820. (4.10)
By symmetry, pu = p22 , and now the remaining six coefficients are obtained with the
aid of (2.2a) and (2.2b). Thus, the following table of values of the pik was obtained.

\ 3
k \ l 2 3

+3.820

-2.153

-1.667

-2.153

+3.820

-1.667

-1.667

-1.667

+3.334

As a check, p22 was also computed by means of (2.5) and (2.10), and excellent agreement
was obtained.
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