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A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM*
BY

ATHANASIOS PAPOULIS
Polytechnic Institute of Brooklyn

Introduction. In determining a function r(t) from its Laplace transform R(p)

R(p) = [ e"'r(t) dt (1)
Jo

one applies either a partial fraction expansion or an integration along some contour in
the complex p-plane; one thus obtains r(t) in terms of the poles and residues of R(p),
or from the values of R(p) on a contour of the p-plane. Both methods have obvious
disadvantages for a numerical analysis.

In the following we propose to develop a method for determining r(t) in terms of the
values of R(p) on an infinite sequence of equidistant points

Vk = a + ka k — 0, 1, • • • , n, • • • (2)

on the real p-axis, where a is a real number in the region of existence of R{p), and an
arbitrary positive integer. That R(p) is uniquely determined from its values at the
above points, is known [1]. It should therefore be possible to express r(t) directly in
terms of R(a + ka). In this paper it will be shown that r(t) can be written in the form

r(0 = E CWO, (3)
*«0

where the <pk's are known functions, and the constants Ck can readily be determined
from the values of R(p) at the points a + ka.

The <pk's can be chosen from several sets of complete orthogonal functions; in our
discussion we shall use the familiar trigonometric set, the Legendre set and the Laguerre
polynomials.

The trigonometric set. We introduce the variable d defined by

e~" = cos 6 a > 0. (4)

The (0, oo) interval transforms into the interval (0, x/2), and r(t) becomes

— - In cos dj.

For simplicity of notation we shall denote the above function by r(6) using the same
letter r.

The defining equation (1) takes the form
r* t/2

aR(p) = / (cos 6)(B/")-1 gin dr(6) dd (5)
J 0

*Reeeived January 6, 1956. Part of a paper presented at the Symposium on Modern Network Syn-
thesis, Polytechnic Institute of Brooklyn, April 1955.
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hence with
V = (2k + 1 )<y k = 0, 1,2, •••

we have

<r/?[(2fc + 1)c] = f (cos 0)"sin 0r(0) dd. (6)
J 0

In the following we shall assume, without loss of generality, that r(0) = 0 subtracting,
if necessary, a constant from r(0). The function r(6) can be expanded in the (0, ir/2)
interval into an odd-sine series

CO

r(0) = X) C* sin (2k + 1)0. (7)
*-0

This can of course be done by properly extending the definition of r(6) in the (— rr, + x)
interval.

We shall next determine the coefficients Ck . We have

r fe" ~t~ e~'e\2n e'1 — e~'e
(cos 0) sin 0 = 2 / 2j '

expanding in the right hand side and properly collecting terms we obtain

22"(cos 0)2" sin 0 = sin (2n + 1)0 + • • •

+ - Cfc2! J] sin Pfo ~k) + 1]0 + ■ • • + [(2nn) - (n2" J] sin 0.
(8)

We next insert (7) and (8) into (6); because of the orthogonality of the odd sines in
the (0, 7r/2) interval and since

r r/2

/ [sin (2n + 1)0]2 dd = — ,
J 0 ^

we have

- 2-i{[(2;)

+

hence with n = 0, 1, 2, • • • we obtain the system

- aR(a) = Co,
7T

22 - crR(3<r) = C„ + C, ,
7T

2" ^ »K|(2» + Do] - [(2n") ~(n2" j)]c. + • • ■

+ [(*)-(*->)]

(9)

C._» + • • • + Cn .
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Thus R(<r) gives C0 , R(3<r) give Ci and each value of R(p) at the points (2fc + 1 )u
together with the coefficients C0 , Ci • • • , Ck-i , determines Ck . The system (9) can
obviously be written in such a way as to give directly Ct in terms of R(<r), R(3v), • ■ ■
alone, but not much is gained, since in a numerical evaluation of the Ct's equation (9) can
be used as easily. Table 1 gives the numerical values of the coefficients of the Ck's in
the right hand side of (9), for fc = 0, 1, • • • , 10.

Table 1

n Co C\ C2 Ct Ct Ci Ct C7 Ci Ci C10

0 1
1 1 1
2 2 3 1
3 5 9 5 1
4 19 28 20 7 1
5 42 90 75 35 9 1
6 132 297 275 154 54 11 1
7 429 1001 1001 637 273 77 13 1
8 1430 3432 3640 2548 1260 440 104 15 1
9 4862 11934 13260 9996 5508 2244 663 135 17 1

10 16796 41990 48450 38760 23256 10659 3705 950 170 19 1

Thus a method of analysis has resulted which compares sometimes favorably with
the known methods of numerical evaluation of r(<). Indeed the computation of
i?((2fc + l)cr) presents no difficulty, and the Ct's can be readily determined from (9);
the trigonometric functions are available, hence r(9) can be computed with any desired
accuracy from the series (7). In a numerical evaluation of r(0) one computes the finite
sum

rN(d) = sin (2fc + 1)0 (10)
fc —0

of the first N + 1 terms of (7); as N tends to infinity r„(6) tends to r(0). The nature of
the approximation is well known from the theory of Fourier series [2]; rN(d) and r{6)
are related by the equation

/m 4 fT/2 , s sin [K4N + 3)(0 - y)] ,
»(«) - - l r(p) sini(,Jy) "" dy, (11)

thus the approximating function rN(d) is the average of r(9) with the Fourier kernel

sin [K4iV + 3)(9 - y)]
sin §(0 - y)

as the weighting factor. From r(0) one can readily obtain r{t) with the change of variable
established by (4); however, Eq. (7) can be written directly in the time domain. Indeed
since

sin nO TT , .
—: — = UJx) COS 6 = X,sin 0
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where Un(x) are the Tchebycheff sine-polynomials of order n and

sin 6 = (1 - e~2")u2

we have from (7)

r«) = (1 - e~2")1/2 £ CkU2k(e~"). (12)
<fc-0

The choice of a depends on the interval (0, T) in which r(t) is best to be described;
if it is chosen so that

P-'T _ ie — 2

then the (0, T) interval transforms into the (0, ir/3) interval. If a detailed description
of r(i) is desired both near the origin and for large values of t, then the function can be
evaluated twice with two different values of <r.

The above provides a simple proof of the announced theorem that the Laplace
transform R(p) is uniquely determined from its values at the sequence

pk = a + kcr k = 0, 1, • • • , n, • • • (2)

of equidistant points on the real p-axis. This proof uses the well-known orthogonality
and completeness of the trigonometric set. Indeed r(0), and hence r(t), is completely
determined from the coefficients Ck of (7); these coefficients can be determined from
R(a + for); knowing r(t) one clearly has R(p) therefore R(p) is uniquely determined
from its values at the points (2).

The Legendre set. We shall next expand r(t) into a series of Legendre polynomials.
We introduce the logarithmic time-scale x defined by

e~" = x a > 0. (13)

The (0, oo) interval transforms into the interval (1,0): again we shall denote the function

r(-ilnx)

by r(x). Equation (1) takes the form

oR{p) = f x("/')-V(x) dx (14)
Jo

from which we obtain with p = (2k + I)a,

aR{(2k + l)cr] = f x"r(x) dx. (15)
Jo

Thus the value of the function R(p) at the point [(2k + l)cr] gives the 2kth moment
of the function r(x) in the (0, 1) interval

It is known that the Legendre polynomials Pk(x) form a complete orthogonal set
in the (—1, 1) interval; We extend the definition of r(x) in the (—1, 1) interval by
making

r( — x) — r(x).
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This function, because of its evenness, can be expanded into a series of even Legendre
polynomials. We thus have

oo

r(x) = X) CkP2k(x), (16)
k-0

using the time scale we can write (16) in the form

r(t) = ± CkP2k(e-"). (17)
*-0

To determine the coefficients Ck in (17) we observe that P2k(e~"), being an even poly-
nomial in e~", of degree 2k, will have as transform the function

p(p + 2a) •••(? + 2ka) '

where N (p) is a polynomial of degree less than 2k. It is further known that

f x2nP2t(x) dx = 0 for n < k. (18)
Jo

From Eqs. (18) and (15) follows that

^2*[(2n + l)tr] = 0 n = 0, I, • • • , k — 1

hence the roots of N(p) are

(2n + l)a n = 0, 1, • • • , k — 1

and $2i(p) can be written in the form

a, _ (P ~ ~ 3<r) • • • [P - (2k - 1)tr] .
p(p + 2*) ••• (p + 2k*)

where A is a constant; to determine A we observe from the initial value theorem that

lim p$2k(p) = A = P2k( 1)
J)—»co

and since P2*(l) = 1, we must have

A = 1.

Thus the Laplace transform of Pn(e~") is given by

$ M - (P ~ ~3[p~ (2k -''!>]
2"iP)~ p(p + 2a) (p + 2ka) <19)

Taking the transform of both sides of (17) we obtain

R(v)-^+ £<rIr- ~ 'H c.
p nt p (p + 2ka)

If we replace p by

a, 3a, • • • , (2k -f- l)or, • • •

(20)
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in Eq. (19), we obtain the system

aR{a) = C0 ,

p/q \ Co 2CiaR(3c) = - + —

<rR[(2k + l)o-] 2k + 1 + (2A; + 1)(2A; + 3) +

(21)

2k(2k - 2) • • • 2Ck
+ (2k + l)(2fc + 3) • • • (4fc + 1) "

Again R(<r) gives C0 , i2(3c)Ci and so on. The partial sum rN(x) is the average of
r{x) with the Legendre kernel as the weighting factor. The constant a- is chosen with the
same considerations as in I.

The above discussion furnishes a proof of the "Moment theorem" [1], [4]: that a
function r(x) in the (0, 1) interval is uniquely determined from its moments.

M. = f r(x)xm dx m = 0,1,
Jo

The proof is based on the orthogonality and completeness of the Legendre poly-
nomials. In fact we also succeeded in writing r(x) as an infinite sum of Legendre poly-
nomials that can be determined from the moments of r(x); these coefficients are given
by the system (21) where on the left hand side we replace R(2k + IV) by M2k .

The Laguerre set. As a last case we shall consider the Laguerre set which has already
been used in network analysis and synthesis [5]. The method described here will give a
simpler way of determining the coefficients of the resulting expansion; it will also make
clear the nature of the approximation, if the series contains only the first N + 1 terms.

The usual definition of the Laguerre polynomials Lk(t) is

WO -•■ &{£>-]■ (22)
With

¥>*(<) = e-Lk(t) (23)

we easily obtain for the transform of <pt(t)
k

**(p) = (p + ir1' (24)
Since the derivatives of $t(p) of order less than k are zero at the origin, we must

have [71

fJ 0
t"ipk(t) dt = 0 for n g k — 1. (25)

With
r{t) = E Cm(t) (26)
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we have

(27)

It can be shown by differentiating n times the power series expansion at the origin
of l/(p + 1) that

W+TT'- <■'U" i %1)V- (28)
Expanding the function R(p) at the origin we obtain

CO

R(p) = X) akpk. (29)
ifc-0

From Eqs. (27), (28) and (29) we obtain equating equal powers of p

a0 Co ,

di = C\ Co ,

(30)

= Ck ~ (l)0"1 + +(-1)'Co.

The above system can be solved explicitly for Ck , with a simple induction [6]; the
result is given by

= Z [%*~i • (31)
1-0 \j/

Thus knowing the coefficients of the series expansion (29) of R(p) we can readily
determine from (31) the coefficients of (26).

Suppose that r{t) is approximated by the finite sum
1V

Cj(32)
k-0

of the first N + 1 terms of (26); then the transforms RN(p) and R(p) of rN(t) and r(t)
have equal derivatives at the origin of order up to N, therefore [7]

f tnrN{t) dt = [ t"r(t) dt n jS N (33)
Jo Jo

that is the function r(t) and rN(t) have equal moments of order up to N.
Examples. In the following applications we shall use for our expansions the trig-

onometric set. We have approximated the inverse of R(p) by

r„(6) = ECtsin(2A: + 1)6 (11)
k-0

where the coefficients Ck are given by (9) which we write in the form

!c- - +"<-1 - % [02" J - („ -T- i)]c' • (34>
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As examples we shall take functions whose inverse r(t) is known, so as to compare r(t)
with rN(t). For the choice of a we are guided either by the (0, T) interval of interest,
or from the (0, p) interval of the real p axis in which R(p) has its greatest variation;
the choice of <r is not critical.

Example 1.

m ;<p + o'a- +1 wetake '"°-2

Table 2

Example 1 Example 2

C» 10« C* 104

0 1724 1961
1 3154 4899
2 205 4009
3 -2075 460
4 380 633
5 530 1762
6 - 754 166
7 474 862
8 -193 718
9 -40 199

10 58 982

From equation (34) we obtain for the coefficients Ck the numbers given in Table 2.
These values inserted into (11) give for rN(0) at the points

6 = 0, 5, • • • ,90°
the numbers in Table 3.
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The curve of Fig. 1 gives the inverse

r(<) = ^ e-0'21 sin t

of R(p); the + points give the values of rN{t) as computed. The relationship between
6 and t is established in (4).

Example 2.

_ 4 (p2 + i)1/2 a ~ 0-2

This example is chosen because of its discontinuity at the origin; clearly since

r(0) ^ 0

r(6) will be discontinuous at 6 = 0, and rN(d) will exhibit the Gibb's phenomenon.

Table 3

Example 1 Example 2

rN(0) X 104 rN(e) X 104

5 398 8133
10 432 8739
15 1158 6958
20 2511 7787
25 3362 7896
30 4215 6363
35 5571 5977
40 6029 5241
45 5181 2612
50 4048 615
55 1944 - 834
60 -1502 -3208
65 -3272 -3190
70 -1590 286
75 570 1748
80 694 -11
85 -33 -412

The values of Ck and rN(0) are listed in Table 2 and Table 3. In Fig. 2 the inverse

I ut)
is plotted; the + points give the computed values of rN(t).

We see from the above examples that rN(1) is a good approximation of r(t).
The oscillation near t = 0 of Example 2 could have been avoided and a better fitting
obtained if instead of R(p) the function

PC,A [pR(p)l-<» f ( 1W — -,L>+ ir - z)
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were chosen, since its inverse satisfies the condition

r( 0) = 0.

Fig 2

10 12 14 16
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