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INTRINSIC FORM OF THE CHARACTERISTIC RELATIONS IN THE
STEADY SUPERSONIC FLOW OF A COMPRESSIBLE FLUID*

BT

N. COBURN
University of Michigan

1. Introduction. The purpose of this paper is to express the characteristic relations
for the steady, supersonic, three-dimensional, rotational and irrotational motion of a
polytropic gas in intrinsic form and to apply these relations to the study of a class of
space Beltrami motions. This class of motions is characterized by the fact that one
family of the characteristic surfaces consists of «»1 parallel planes.

To obtain intrinsic forms of the characteristic relations, two techniques must be
used. First, the equations of motion, continuity, and energy must be expressed in terms
of a set of characteristic variables. Secondly, these must be reduced to intrinsic form by
expressing the partial derivatives of the components of the velocity vector in terms of
the directional derivatives of the magnitude of the velocity vector, q, and the sound
speed, c, and the curvatures associated with the characteristic manifolds.

The class of fluid motions to be studied is characterized by the fact that one family
of °°1 characteristic surfaces consists of planes, z = constant. If the additional assump-
tion is made that the bicharacteristics and their orthogonal trajectories determine two
families of cylindrical surfaces with generators parallel to the 2-axis, then it is shown
that these surfaces are right circular cylinders with oz as axis; the bicharacteristics are
concentric circles; the stream lines are helices along which q (or M, the Mach number)
is constant.

2. The basic relation in terms of characteristic variables. Let x', j = 1, 2, 3, denote
a Cartesian orthogonal coordinate system in Euclidean three-space and let us denote
partial derivatives by the symbolism

* " ir
In a Cartesian orthogonal coordinate system, covariant and contravariant quantities
are equivalent. However, in order to use the Einstein summation convention of summing
on repeated lower and upper indices, we shall use these two equivalent quantities.

First, we consider the equations of continuity, motion, and energy in a Cartesian
orthogonal coordinate system. Let p denote the specific density and v' denote the velocity
vector, then the equation of continuity is

v' djp -)- p djt)' — 0. (2.1)

For non-isentropic flows of a polytropic gas, the equations of motion may be written
in the form [1]

ypv' djVk + di(pc2) = 0, (2.2)
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where c is the local sound speed which may be defined in terms of the pressure, p, and
the specific entropy S by

-fee)
\dpJs'

and y is the constant of the gas law

v = pVGS)-
In addition, we shall use as energy equation the Bernoulli relation

»' s< (pri + () - <2-3>

where q2 — v'v,- is the magnitude squared of the velocity vector.
By definition, the characteristic manifolds of the system (2.1), (2.2), and (2.3) are

those surfaces along which discontinuities in the derivatives, 3,p, d,c, dfvk , can occur.
Using the methods of a previous paper [2], these surfaces can be easily determined.
However, these methods are not pertinent to the present problem; hence, the procedure
which follows will be by analogy. By eliminating p between (2.1) and (2.2) and then by
eliminating d,c2 in the resulting equation through use of (2.3), we obtain the following
relation

(*V - c2gik) d,vt = 0, (2.4)

where g'k represents the metric tensor. Thus, the same basic equation (2.4) is valid in
the non-isentropic as well as in the isentropic case [3].

If the symmetric tensor a'k is defined by

o" = v'v* - c2g'k, (2.5)

then for isentropic flows the characteristic manifolds of (2.4) are determined by

a'knjnk = 0, (2.6)

where n,- is a unit vector orthogonal to one family of characteristic surfaces. It can be
shown that (2.6) determines the characteristic manifolds in the non-isentropic case
{2]. From the known theory of characteristic manifolds [4], it follows that

v'' = en' + bt\ (2.7)
where V is the unit tangent vector to the bicharacteristic curves and

b = (q2 - c2)1/2. (2.8)

We shall require that both b and c be positive. However, we shall not fix the sense
of t', n\ This means that we shall be able to use either nappe of the normal or bicharacter-
istic cones.

By use of (2.5), (2.7), we find that

a'knk = bet', (2.9)

aiktk = ben' + (q2 - 2e2)t'. (2.10)

Secondly, we shall introduce a few basic relations from differential geometry [5].
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Since n' is a unit vector orthogonal to °o1 surfaces, we may write

d,nk = s,t + n,uk , siknk = uknk = 0, (2.11)

where sjk is the symmetric second fundamental tensor of the ool surfaces orthogonal
to n, and uk is the curvature vector of the n, congruence of curves. Further, let p, denote
a unit vector field which is orthogonal to both and n,- so that p,- , t,- , and n,- form an
ordered orthogonal right hand triple at each point. The curvature vector of the p,
congruence of curves will be denoted by w,-, and the curvature vector of the t,- congruence
by to,- so that

Wi = V dkPi .

m, = tk dk tj
(2.12)

From the decomposition of the metric tensor

gik = ft" + n'nk + pV,
we obtain the relation

g'k d,tk = t't" d,tk + n'n d,tk + p'pk d,tk . (2.13)

It is easily seen that

= 0, n'nk djtk = -tku, p'pk d,tk = -tkwk. (2.14)

Thus, we may express (2.13) in the form

gik d,tk = -tk(uk + wk). (2.15)

In this paragraph, the relations (2.7), (2.11), (2.15) will be used to express the basic
relation (2.4) in terms of the rates of change of q and c with respect to displacements
along t' and n', and in terms of the curvatures sjk , u,- , w,- . The following notation for
directional derivatives will be used

hm'd" £-nid<>

Thus, d/dt represents rate of change with respect to displacement along t', and similar
interpretations are valid for d/dn, d/dp. By differentiation of (2.7), we find

djVk = c djnk + b djtk + nk dfi + tk djb. (2.16)

Multiplying (2.16) by a'k and using (2.9), (2.10), we obtain the relation

a'k d,vk = caik d,nk + baik d,tk + cb(~ + + (q2 - 2c2) f(- (2.17)

To evaluate the term a'kd,nk in equation (2.17), we use (2.5), (2.7) and find

aik = c(n'n - gik - t't") + q2t'tk + cb(t'nk + n't"). (2.18)

Forming the scalar product of (2.11), (2.18), we obtain

aik d,nk = cbtkuk + b\kt'tk - c2M* (2.19)

where M* is the mean curvature of the characteristic surfaces

M* = g"sik .
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To determine the term a'kdjtk of equation (2.17), we use (2.18), (2.14), (2.15) and find

aik d,tk = —cbsikt'tk + c\w". (2.20)

If (2.19), (2.20) are substituted into (2.17) and the left hand side of the latter equation
is equated to zero, we obtain the desired intrinsic form of the basic relation (2.4)

cb(jt + ~) + (q2 - 2c2) ̂  + cW + w") - c°M* = 0. (2.21)

3. The intrinsic conditions for rotational (or irrotational) motion in terms of
characteristic variables. If e"* denotes the permutation tensor, then the vorticity
vector «' is defined by

co1' = e"k d,vk . (3.1)

Since the ordered triad p, , , n, forms a right hand system, the following formulae are
obtained by forming the scalar products of (3.1) with the vectors , raf, p,-, respectively

u'tj = (n'pk — nkp') diVk ,

= (pH" - pkt{) diVk , (3.2)

u'pj — (t'nk — tkn') diVk .

A lengthy but direct computation by use of (2.11), (2.12), (2.16) shows that (3.2) may
be written as

Jtj = cpkuk — + b(n'pk — nkp') d{tk ,
dp

w'n,- = bpkmk , (3.3)
dp

i dt) j ,i , k
uPi = Tt~to-bSiktt ~ctkU-

The Eqs. (3.3) determine the intrinsic form of the conditions for irrotational motion.
Now, we consider a form of the equations of motion which contain the vorticity [6]

d,K - T diS = e,itv'u>k. (3.4)

Here, T is the absolute temperature, S is the specific entropy, and h0 is the stagnation
enthalpy

h° = + 2 ' ^3-5)

where y is the ratio of the specific heats of the polytropic gas. Since the stagnation
enthalpy is constant along a stream line (see 2.3), with the aid of (2.7) we find that

c^+&^7 = 0 (3.6)dn dt

and S satisfies a similar relation.
To express (3.4) in intrinsic form, the scalar product of this relation with the vectors

tj , rij , and Pi will be found. Using (2.7), (3.1), and (3.3), the following formulae are
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obtained

dh0 „ dS (dc db
dt T St ~ °(dl 6n Cl'U>) (3-7)

- Aft-ai~A') (3-8)dhg _ J! dS
dn dn

^dp ~ ^ dp = q%~ + c*u*)p' ~ c&nV(<M* ~ dktj). (3.9)

Evidently, (3.8) is a consequence of (3.6), (3.7).
The above equations can be described by saying that they form a system consisting

of three equations (3.7), (3.9), and (2.21) in the unknowns

dq dq dq
dt ' dn' dp '

where h0 and S are prescribed functions which are constant along a stream line. The
sound speed, c, is determined as a function of the magnitude of the velocity, q, by the
Bernoulli relation (3.5). Thus, the roles of c and q may be interchanged. In the appli-
cations, the stream lines are unknown. Hence, the problem is to determine the functions
h0 , S, and q so that two relations of the type (3.6) are satisfied (one equation in the
derivatives of h0 and the other in the derivatives of S) and also Eqs. (3.7), (3.9) and
(2.21) are valid.

The curvature term,

K = nYidJ, - cM<), (3.10)
in the right hand side of (3.9) will be briefly considered. Through use of (2.11), this term
may be written as

K = —(n'tk diph — t'pk dkn,) = —nitk d:pk + skit'ph. (3.11)

If the unit vector field pf is orthogonal to oo1 surfaces, as is the case in plane and axial-
symmetric flow, then

djPt = rik + PiWk , pkrik = pkwk = 0,

where rik is the symmetric second fundamental tensor of these surfaces and wk is the
curvature vector of the p, congruence (see 2.12). In this case, (3.11) reduces to

K = -rikn'tk + sjkt'pk. (3.12)

For the special cases of plane and axial-symmetric flow, K vanishes. In both cases,
Pi is orthogonal to °°1 planes and hence rjk = 0 and p, , t,- are in the principal directions
of the surfaces orthogonal to [7]. The 2 planes are parallel in plane flow; they
intersect in a common line in axially symmetric flow.

4. Canonical form of the system (2.21), (3.7), and (3.9). In this section the equa-
tions (2.21), (3.7), and (3.9) will be written so that one equation contains only the
directional derivative, d/dt, a second equation contains only the directional derivative
d/dn, and the final equation contains only the directional derivative, d/dp.

If (3.7) is multiplied by b and the resulting equation is added to (2.21) the following
relation is obtained.
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52 at f = ~c%tkW" + + °*M* + b{jf ~ T ff)- (4-i)
For q > c, the equation (4.1) is the first of the desired canonical relations.

To determine the second relation of desired canonical system, we multiply (3.7)
by b and subtract from (2.21). We find that

2cbT' + ~ 2c2) Tf + <?ht^2ul + w") - C*M* + cb\kt''th
(4.2)

= _ h(— — T —)
\dt at)'

To evaluate the second term of the left hand side of (4.2), we use (3.5), (3.7) and obtain

+Or + «[r ft - ~ ~ <4'3>
Converting dh0/dt, dS/dt into dh0/dn, dS/dn by use of (3.6) we find that (4.3) reduces to

(T - l)b' f, - 2c f - (, + 1 )[cT f + 6c g + eb'.,St + (4.4)
Substituting (4.4) into (4.2) and converting dh0/dt, dS/dt of (4.2) into dh0/dn, dS/dn
by use of (3.6), we obtain the second canonical relation for q > c.

b[(y ~ 3)q2 + 4C2] ~ = [2q2 - (y + 3)c2]h\ht>t" + («y - 1 )bVM*

~ eb[(y - 3)q2 + 4c2]ttuk - (y - 1 )bsctkw" (4.5)

+ tOv - 3)q2 - (T - 5)c2] ̂  + [2q2 - (y + 3)c2]T g-

Evidently, (3.9) is the third equation of the desired canonical system. This equation
can be Avritten in the form

q | = ^ ~ T t + + + CbK' (4"6)

where K is the curvature defined in (3.10).
5. A class of space flows. For plane flows, the two families of characteristic surfaces

can be chosen to be right cylinders with parallel generators which are perpendicular to
the plane of the flow. Here, we consider the case where one family of characteristic surfaces
are parallel planes. We shall show that this condition defines a family of space flows.

We recall that in Sec. 3, we assumed that the ordered triad of unit vectors pt , ts , re-
forms a right hand system. If the characteristic planes are assumed to be perpendicular
to the 2-axis of an x, y, z Cartesian orthogonal coordinate system, then n,- can be chosen
to be sensed either in the positive z-dircction or in the negative z-direction. In the first
case, the ordered pair, p, , t, forms a right hand system when considered as part of the
ordered triple pt , t,- , and the positive z-direction. The second case leads to nothing new.
Hence only the first case will be considered.

In any plane orthogonal to the z-axis, Ave introduce two families of parameter curves:
a = variable along t,, f3 = variable along p, . Arc length will be positive when measured
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in the directions of t,- , Pi , respectively. Every family of oo1 curves, a — variable (2 =
constant, /3 = constant), generates a surface. Any surface /3 = constant will be chosen
so that it consists of °°1 curves, a = variable, lying in °°1 planes, z = constant. We
choose the surfaces, a = constant, in a similar manner. The third family of surfaces
in our new coordinate system -will be the planes, z = 8 = constant. The transformation
equations relating a, (3, 8 to x, y, z are of the form

x = x(oc, p, 8), y = y(a, 0, 8), z = 8. (5.1)

In any plane, 8 = constant, the arc length element is

ds2 = (Ada)2 + (Bd0)\ (5.2)

where A, B are functions of a, fi, 8. If 8(a, /3, 8) denotes the angle between the x-axis
and tj then the unit vectors have Cartesian orthogonal components

: (cos 6, sin 6, 0), ^

Pi: (sin 6, —cos 0, 0).

Thus, we find that

da: . . by . . „— = A cos 9, -f- = A sm 6,* (5.4)
n • dy „- = Bsm0, -=-£cos0.

In the case of curves lying in the planes, z = constant, the sense of the principal
normal vector is chosen so that the ordered triple consisting of the tangent vector, the
principal normal vector, and the positive ^-direction form a right hand system. The
curvature may be positive or negative. By use of the Frenet formula for plane curves
and the fact that the principal normals of the pk , tk congruences lie along th , —pk ,
respectively, we find

p' djpk = wk = h'tk , ^ ^

t' djtk = mk = -kpk ,

where k' and k are the curvatures of the curves, /3 = variable and a= variable, re-
spectively. From the equations (5.2), (5.5), it follows that

r=tl§Vi (r ft
B d/3 ' A da (5-6)

Substituting (5.3) into (5.6), we find that

1 dd , 1 dd
k =BW' ~A da'

Again, we note that the integrability conditions of (5.4) are

dd = IdA
da~ B di3 ' d/3 ~ A da'

The relations (5.5), (5.7), lead to the useful results

(5.7)
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,k -tf 1 dB
Wkt ~ AB da '

_ *   lmkp AB dp'

(5.8)

By use of (5.4), we see that the matrix of the transformation (5.1) is

A cos 6 A sin 6 0dx dy dz
da da da

dx dy dz
d^ dfi dp
dx dy dz
,d8 dS dS

B sin 6 —B cos 0 0

dx dy 1
. d8 88

(5.9)

Since the matrix of da/dx etc. consists of the reduced cofactors of the determinant of
the matrix (5.9), we find

da dp dS
dx dx dx

da dp dS
dy dy dy

da dP dd
. dz dz dz_

cos 6 sin 6
A B

sin 6 cos 0

0

A B

"CEia C&23 1

(5.10)

where

_ sin 6 dy cos 6 dx
0,13 ~ A dS A dd '

cos 6 dy sin 6 dx
a*3 ~ B d8 B dS'

(5.11)

Thus, we find by use of the chain rule and (5.10)

d\ 9 9 . 9 /«= ION
dz)x,, a" da 023 dp + dS' (5 )

The significance of the coefficients a13, a23 can be seen from the following arguments.
By use of (5.9), (5.11), we find that

_ 1 (§% fry ,
°13 - A* [da dS + da dd + (m)J'

_ 1 /dxdx dy dy f vn\
a23-pWd5 + d,3aa + (0)(1)/-

(5.13)

If cos (a, 5) denotes the cosine of the angle between the curves, p = constant, d =
constant, and a = constant, fi = constant and cos (/3, S) denotes the cosine of the angle
between the curves, a = constant, 8 = constant and a = constant, P = variable then

Aa13 = cos (a, 3), Ba23 = cos (P, 8). (5.14)
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Again, we note that if we solve (5.11) for dy/dS, dx/S8, we obtain

= Ba2Z sin 6 + Aa13 cos 0,aS (5.15)
dy . . _
— = Aciu sin 9 — Ba23 cos 9.

From (5.4), (5.15), we obtain a set of integrability conditions which must be added
to the equations (5.7). These are

£(&>„)-A f|, (5.16)

+&>„£-!f, (5.17)

£(BM-A.„^- fs, (5.18)

(5.19)

From (5.14), we see that if the angles between the coordinate lines, a = variable and
8 = variable, (3 = variable and 5 = variable, are t/2, then Aa13 — Ba23 = 0. The above
relations show that in this case, 9, A, B are all independent of 5 (as is to be expected).
The relations (5.7), (5.16) through (5.19) imply that the Riemann tensor vanishes in
the a, P, S system.

To determine formulas (4.1), (4.5), (4.6), (3.6) in terms of the congruences t', p', n',
we must evaluate the curvature terms. Since, the n' congruence consists of straight lines
parallel to the z-axis, the curvature vector of these curves, uk , vanishes. Further, the
second fundamental tensor of the planes (z = constant) is sjk = 0; also, the mean curva-
ture, M* of these planes vanishes. Again, we consider the curvature, K, of (3.10)

K = n'p\djtt — d„t,).

Since the vector /,• lies in the plane, z = constant

»y <M,- = 0.

Further, n'djtk represents the directional derivative of tk in the z-direction. From geo-
metric considerations, or use of (5.3), it follows that

- "fn ■
By use of the above results and (5.12), the formula for K becomes

„ / dd , 39 89\ _n.
~ V13 da + °23 dp ds)'

Finally, the directional derivatives d/dt, d/dn, 9/dp become
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— = A~l — — = B'1 —
dt da ' dp dp

(5.21)
 ai\ _ / d_ d_ _b\

dn ~ dz)x,v ~ V13 da + 0,23 dp db)'

Now, we express the system (4.1), (4.5), (4.6), (3.6) in terms of the metric quantities
A, B, a12 , al3 , 6, and the partial derivatives d/da, d/dp, d/dS. By use of (5.8), (5.21),
we find that (4.1) becomes

bj-% = c*£ln£ + ^ - T^. (5.22)
da b da da da

Further, by use of (5.21), (5.8), relation (4.5) reduces to

,,, 2 , . J db . db 36"]
~b[(y - 3)q + 4c ][a13 — + a23 ^

= (y - 1)b'cA'1 £ In B - [(7 - 3)q2 - (y - 5)c3]

+ ff1] " « - <r + 3>«'J
f dS

'La'3 da

(5.23)

l M
+ °23 dp '

By use of (5.20), (5.21), (5.8), we find that (4.6) becomes

dq dh„ _ dS ,2 d , , . , r,f dd dd d0~| . .q-i-W-TW-h ^ to -1 + C6SLa,» _ + (5.24)

Finally, (3.6) reduces to

/ 1 7 a —1\ dho dhf) dh/Q _ .(—ca13 + bA ) — - ca23 + c — = 0. (5.25)

From (5.25), it follows that the differential equations of the stream lines are

Ada dp
-Ao„ + (M2 - 1)1/2 ~ — a23 _ dS> (5"26)

where M is the Mach number, q/c. Since Ada, Bdp, dS are the arc length elements along
the coordinate lines and Aai3 , Ba23 are cos (a, 5), cos (J3, 8), it follows from (5.26) that
in general the stream lines are space curves.

6. A family of isentropic Beltrami flows with plane characteristic surfaces (helical
stream lines, concentric circular bicharacteristics). We shall consider those flows of
Sec. 5 for which

h0 — constant, S = constant, a13 = a23 = 0. (6.1)

From (3.4), it follows that in any isentropic flow for which h0 is constant, the vorticity
vector is parallel to the veloctiy vector. Such flows are called Beltrami flows and are
more general than irrotational flows. As noted earlier, (5.16) through (5.19) imply that
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6A 6B 60
68 ~ 68 ~ 68 ~ ' ^ ^

that is, the curves, 5 = variable, are orthogonal to the planes, z = constant. Stated in
other words, every family of °°1 bicharacteristics (8 = variable, a = variable) forms surfaces
with straight line generators parallel to the z-axis; also, every family of <»1 orthogonal tra-
jectories of the bicharacteristics (5 = variable, 0 = variable) forms similar surfaces. From
(5.23), (6.1), (6.2), we see by use of a simple argument that

f? - § - (6-3>
From (6.2), (6.3), we see that, B = 1, by proper choice of scale factor along the 0 =
variable curves. Further, (5.7) implies that the orthogonal trajectories of the bicharacter-
istics are straight lines or k' = 0, 9 = 0(a) and

A = 00' + /(a), (6.4)
where 8' = dd/da and f(a) is an arbitrary function of a. Returning to (5.22), (5.23),
(5.24), we see that (6.1), (6.2) lead to

q = (6.5)
M2 d , M2 d_. . ....

2(M2 - 1) dfi 2 + (t - 1 )M2 d/3 (6,6)

where M = q/c is the Mach number. Since M is a function of only /3, we see that in (6.4)

0(d) = Cia, f(a) = c2c, , (6.7)

where Ci , c2 are arbitrary constants. Integrating (6.6) and choosing a proper scale factor
along the a = variable curves, we obtain

2 + (y — 1 )M2 _ . (7+i) . .- A ■ ■ (6-8)

To interpret (6.8), we must determine the significance of A. From (6.7), (6.4) we find

A = Ci (/? + c2).

Since, B = 1, we obtain from (5.4)

x = (/3 + c2) sin 9, y = — (0 + c2) cos 6. (6.9)

From (6.9), we find that, c2 + 0 = r, where r is the radial distance variable in polar
coordinates. If we introduce the polar angle <j> = 6 — x/2 into (6.9) then

x = r cos <t>, y = r s'm (j>. (6.10)

Thus, (6.8), may be written as

2 + (7 ~ DM'
M2- 1

= Cr(T+1), (6.11)

where C is a constant. It is easily shown from (6.11) that for y > — 1, M
decreases as r increases, M = 1 as r approaches infinity, M approaches infinity when
r = [(7 -1 )/C]l/(T+1).
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From (6.9), we see that the bicharacteristics, r = c2 + 13 — constant, are concentric
circles. By integrating (5.26), we obtain

(][/f2   IN 1/2
<t> =    —z + c3 , r = constant, (6.12)r

where c3 is an arbitrary constant. Thus, the stream lines are helices and cut the generators
of the cylinder, r = constant, in the constant Mach angle \p, where

tan = (M2 - 1),/J.

By use of (3.3), and the relations (see 5.5)

rr dc db n t 1K = uk = = - = - = °, V m» = -- ,

we find that

- -I •' + (!+!>'• <6 i3>w'

Thus, the present class of flows are rotational flows. Evidently q is constant along each
stream line [8].

By assigning various appropriate values to a13, a23 , other flows may be obtained.
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