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1. Introduction. It has been observed in the irrigation wells of the Hawaiian Islands

that the water-level fluctuations have frequency components corresponding to those

of the ocean tides [1]. This phenomenon was analyzed by Carrier and Munk [2], assuming

the observed ground-water fluctuations to represent a diffusive transmission of the

tidal disturbances through the porous volcanic structure of the island. The purpose of

the investigation was to use the results in estimating the permeability of the porous

medium.
In [2] it was assumed that the porous medium was infinitely deep. In actual fact, how-

ever, there will be an essentially impenetrable bounding surface (see Fig. 1). This paper is

concerned with the analysis of the same problem treated in [2], but taking account of

the bounding bottom surface. Numerical computations are carried out for several values

of the dimensionless depth. Also the limiting case of shallow water theory is studied.

Using the results of the infinite depth, shallow depth, and finite depth theory it is possible

from the graphs given in Figs. 2 and 3 to estimate the amplitude and phase lag in the

fluctuations of the ground-water as a function of the distance inland for various values

of the dimensionless depth. It is found that for the values of the physical parameters

which are probably of most concern the infinite depth theory gives satisfactory results

in the region of interest.

2. Formulation of the problem. Although the formulation and the first part of the
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Fig. 2. Ground-water amplitude vs. distance inland, x. (Dotted lines indicate the expected correction

to the computed curves when all modes are considered)

analysis of this problem follows quite closely that related in [2] it is convenient, for the

sake of completeness, to repeat part of that work here. As the water in the ocean bounded

by Oy' and OB (see Fig. 1) rises and falls about its mean level OA, the pressure on the

line OB varies. Corresponding to this periodic change in pressure on OB we can expect

periodic fluctuations in the free surface of the ground-water, i.e. Ox'.

The equations governing the motion of the fluid in the porous medium are the con-

servation of mass

div (Pv) = (P0), (2.1)

and Darcy's law which replaces the conservation of momentum law (see [3]),

v = - (k/fi) grad (p - p0). (2.2)

Here p and y. are the density and the viscosity of the fluid; 6 and k are the porosity and

the permeability of the material; v is the velocity with components u and v in the x'

and y' direction; p is the gauge pressure; p0 = —p0gy' is the pressure when the fluid

motion is zero; p0 is the mean density; and subscript notation indicates partial differ-

entiation. The simple compressibility law used by Carrier and Munk is

p9 = po0o{l + S(p — Po)}, (2.3)

where 8 is essentially (p0c2)-1 with c the speed of sound in the fluid. It should be pointed

out that Eq. (2.2) says that the pressure gradient is proportional to a velocity rather

than an acceleration as in the Navier-Stokes equation. As a result we will obtain finally

an equation of the diffusion type rather than a wave equation; hence the free surface

amplitude will decay in x'.
The boundary conditions expressed in terms of the pressure p are

p = 0, on the free surface, (2.4a)

V = —pogy'oB + Qie'°" on OB, (2.4b)
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d(j> — Po)/dy' = 0 on y' = —H, (2.4c)

p = 0, on the free surface,

where H is the depth of the porous medium. The last boundary condition results from

the requirement that the normal component of velocity be zero on the impenetrable

bottom. The pressure qx is of course directly proportional to the tidal-wave amplitude.

If we let q = p — p0 , and combine Eqs. (2.1), (2.2) and (2.3) we obtain

Aq = (nd0S/k)q, , (2.5)

where A is the Laplacian operator. If we denote by t) the y' coordinate of the free

surface, Eq. (2.4a) implies q(x', 77, t) = p0gn, but on the free surface 17, = v/e, hence

using Eq. (2.2) our boundary condition (2.4a) may be expressed as

q, + (pogk/ii6a)qy. =0 on y' = rj, x > 0. (2.6a)

Actually as in the usual linear theory of water waves this boundary condition is to be

applied on y = 0. The boundary conditions (2.4b) and (2.4c) may be written as

q(on OB) = g1e<°", (2.6b)

qv = 0, y' = —H. (2.6c)

We shall only solve this problem in the case that the line OB occupies the half-line

y = 0, x < 0. That is we take f = 0° (see Fig. 1). Actually this is fairly realistic since

f is probably of the order of 5° or so.

Finally if we introduce the following dimensionless variables

(2.7)
t = ut, x = x'/L, y = y'/L, h = H/L, /

L = (p0gk)/(n60u), « = (plg%b)/{ndau), q = qlV{x, y)e'°",)

we obtain

A(p — it(p = 0, (2.8)

with the boundary conditions

<Pv + if = 0, y = 0, x > 0, (2.9a)

<»=1, y = 0, x < 0, (2.9b)

= 0, y = —h, -co < x < co. (2.9c)

The free surface t]{x, t) is (poff)-1 q(x, 0, t), but from Eqs. (2.7) q — qi<p(x, y) exp (iuit) so

■nix, t) = 0)e'"' a: > 0. (2.10)
Po9

So the problem of determining the free surface is exactly that of determining <p(x, 0).

The combination of parameters qi/p0g is the maximum height of the tidal-wave measured

from y' = 0.

Before proceeding to a solution of the problem defined by Eqs. (2.8) and (2.9) it is

perhaps worthwhile to mention briefly the size of the parameters which appear in this

problem. We have n/p0 = 0 (10-2cm2/sec), k = 0(5 X 10-6cm2), 6 = 0(.20), g = 980

cm/sec2, and co for a twenty-four hour tide is 2x/24 hours, hence L = 0(1000 ft). Since
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c is 0(5000 ft/sec) for water, e is a very small number, 0(10~4). Finally, a reasonable

value for the depth of the ocean is about three miles so h may be as large as 15.

3. Shallow water theory. Before considering the general problem given by Eqs.

(2.8) and (2.9) let us look at the limiting case in which the depth H is small enough that

we can neglect variations in the y' direction, and also set v = 0. Then u(x', t) represents

an averaged velocity across the section — H < y' < 0. If we assume incompressibility,

i.e. 3 = 0, the conservation of mass equation appropriate to this situation is

Hp0ux. = —pQdar), . (3.1)

Darcy's equation reduces to

u = -(k/tiqx. . (3.2)

Since there is no variation in the y direction our condition that q = p0gv on the free

surface must hold throughout the strip —H<y' < 0, x > 0. Using this and Eqs. (3.1)

and (3.2) we obtain

qt.x. — {n6a/kp0gH)q, =0, x' > 0. (3.3)

The condition that q = qi exp (iut) for £ < 0 is now applied at a; = 0; consequently

we set q = qi<p(x') exp (iut). Then Eq. (3.3) becomes

Vm.m. - i(HL)~l<p = 0, x' > 0. (3.4)

An appropriate solution of Eq. (3.4) satisfying a finiteness condition at infinity is

<p(x', t) = exp [— (i/HL)*x'].

Hence

v(x', t) = (qjp0g) exp {- x'/(2HL)i + i[*t - x'/(2HL)i}}, (3.5a)

= (Qi/Pog) exp {- x/(2h)i + i[ut — x/(2h)1']}. (3.5b)

Actually, in order for this theory to be valid not only must the wave length of the

disturbance be large compared to H as in the usual shallow water theory but also H

must be small compared to the other natural'length scale, L, which appears in the

problem, i.e. h must be small. This can be seen by an examination of the behaviour of

the solution of the general problem. This is done in Sec. 5 where it is found that for

h < 1/4 we can expect the shallow water theory to be quite accurate. The amplitude

and phase lag of p0gv(.%, 0/<?i are plotted in Figs. 2 and 3 as a function of x for h = 1/4.

4. Solution of the problem. To solve the problem defined by Eqs. (2.8) and (2.9)

we shall use the method of Fourier transforms and the Wiener-Hopf technique. Let

$(£, y) = f e~i(x<p(x, y) dx. (4.1)
J -co

Then the transform of Eq. (2.8) is

- (£2 + «)* = 0. (4.2)

A solution of this equation satisfying the boundary condition (2.9c) is

<f>(|, y) = .4© cosh {(y + h)C), (4.3)
f

where C = (£2 + it)1/2 and A(£) is to be determined by satisfying the remaining boundary

conditions.
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Let
, N (lim e*x x < 0 . s

9i(x) = ) .-,0 , (4.4a)

/ 0 x > 0

g,(«) = j° * < ° , (4.4b)

[y>(a;, 0) x > 0

and

/(a:) = <pv(x, 0) + i<p(x, 0). (4.5)

It is clear that <p{x, 0) = Qi(x) + g2(x); hence*

*(*, 0) = A® cosh Ch = <?!© + Ga®, j (4 6)

= (a — i£) 1 + G2({).j

Also using Eq. (4.3)

F(f) = (C sinh Ch + i cosh Ch)A(£). (4.7)

Combining Eqs. (4.6) and (4.7) we obtain

F(£) = K(£){Gi(£) + G2(£)}, (4.8)

where

jr/%,\ C sinh Ch + i cosh Ch
m = ^ihch  (4"9)

If we recall from Sec. 2 that we wish to determine <p(x, 0) it is clear from Eq. (4.4)

that our problem is now that of determining g2(x) and hence G2(|). To determine G2(£)

using Eq. (4.8) we shall use the Wiener-Hopf technique. This technique has been used

to treat similar problems (see for instance [2, 4, 5]); consequently the analysis will only

be briefly outlined here. First Gt (£) is analytic in the upper half plane, (UHP), 7m(£)

> — a; (?2(£) is analytic in the LHP and F(£) is analytic in the UHP. Th§ function

K(£) is analytic and non-vanishing in a strip containing the real axis. This will be seen

clearly at the end of this section where K(£) is represented as the quotient of two infinite

products. It might be noted that though C = (£2 + it)l/2 is a multivalued function,

K{g) as defined by Eq. (4.9) consists only of even terms and hence does not have any

branch points. Assuming for the moment that we can write K(£) as !?_(£) //£+(£) where

/£"_(£) is analytic and non-vanishing in the LHP, and K+ (£) is analytic and non-vanishing

in the UHP we can rewrite Eq. (4.8) as

F®K+® - K-(- ia)G&) = \K.(Q - KJ- ia)\G&) + KJQG&). (4.10)

The left hand side of this equation is analytic in the UHP, the right hand side is analytic

in the LHP and they agree in a common strip of analyticity. Hence Eq. (4.10) defines

an entire function E(£). We shall show shortly that K_(£) = 0(£1/2) as | £ | —» ®, 7m(£) <0

and K+(£) = 0(£~1/2) as | £ | —> Im(£) > 0. Using this and investigating order con-

ditions at infinity we can show that E(£) = 0, consequently

G2(Z) = {KiJ)a)" 1}Gl(Q- (4-11)

*Capital letters are used to denote the Fourier transform.
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It is now necessary to determine K_(g) and K+(£). The splitting of K(%) is done in

a manner exactly analogous to that used by Heins in [4] and [5]. Using the infinite

product representation of cosh z, (see [6]) we have

00

M(Q = cosh Ch = II {1 + (2C%)3/(2n + 1)V} = m(£)m(- {), (4.12)
n-0

where

mik) = n {[1 + (4MV(2n + 1)V]» (4 13)

+ i2h£/(2n + l)7r} exp [— i2ht./(2n + 1)t].

We have inserted the exponentials to insure absolute convergence of the infinite products

defining m{£) and m(—£) in the UHP and LHP respectively. If we write M(£) as M_(f)/

M+(£) it'is clear that M_(£) = m({) has no zeros or poles in the LHP. Similarly 1 /M+ (£) =

m(—£) has no zeros or poles in the UHP.

The function L(£) = C sinh Ch + i cosh Ch has zeros at Ch = =fc tft,, n = 0, 1, 2, • ■ • ,
where the /3„ are complex numbers lying in the first quadrant. For n large they may be

determined by the asymptotic relation /?„ = mr + ih/mr + 0 (fna-]2). We may write

L(f) as

m = i ft {i + (Chy/pii = um- (4.14)
n-0

where

m = {[1 + (ieh2)/^ + ii-h/Po] ft {[1 + WWJ + tW/U (4 15)

exp (— itji/mr).

Again we have inserted the exponentials in order to insure absolute convergence in the

appropriate half planes. If we write L(f) as L_(f)/(L+(£) and take £_(£) = Z(£), l/L+(£) =

$(—£) it is clear that L_(£) is free of zeros and poles in the LHP and L+(£) is free of

zeros and poles in the UHP.

Consequently we have

K-® = exp {X(£)}L_©/M_© = exp {X(Q}KQ/m(Q, (4.16a)

K+(Q = exp {x©lL+©/M+© = exp {x(f)]m(- Q/il{- £). (4.16b)

We shall choose the factor exp {*(£)} introduced in Eqs. (4.16a) and (4.16b) in such a

manner that /?_(£) and K+(£) have algebraic behaviour as | £ | —> co in the LHP and

UHP respectively.

To investigate the behaviour of /v_(£) for Im(£) < 0, | £ | —> <» we first note that

the terms involving e may be neglected against unity for | £ | —> co. Since (3n —» nir

as n —» oo we have that i£_(£) is of the order

exp {x(£)l(l + %h/p0) fl {(1 + w/n) exp (- w/n)} /
n-1 •

f[ {[1 + 2w/(2n + 1)] exp [- 2w/(2n + 1)]},
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where w = i%h/x. Now using the relation that

oo

l/r(w) = we1"" II (1 + w/n)e-"/n,
n = 1

and Stirling's asymptotic formula for the gamma function, (see [6]) we obtain

K-(£) = 0{u>} exp [x© + wlnA]},

for Im( |) < 0, | £ | —> oo. So choosing x(£) = — win 4 = — (itjh In 4)/tt we have that

/£_(£) = 0(£1/2) as | £ 1 —* oo, 7m(£) < 0. A similar argument will show that jK+(£) =

0(wT1/2) for | £ | —* co, 7m(£) > 0. With these order relations it is not difficult to show

that i?(£) is zero as mentioned earlier; and hence we obtain Eq. (4.11) for Cr2(£) where

is defined by Eq. (4.16a). In particular it can be seen from Eq. (4.16a) and the

definitions of 1(£) and m(£) that K_(0) = 1.

Using the usual inversion formula we have that

G2(x) = (27T)-1 f ei(li[K_(- ia) - ff_G)]/(a - i£)K.(Q} d£, (4.17a)
J — oo

In the limit as a —> 0 it is clear from Eq. (4.17a), that (r2(£) is not singular at the origin,"

hence we may actually take the real axis as our path of integration in evaluating g2{x).

Of course we shall actually close our path of integration in the UHP when x > 0 and

in the LHP when x < 0. For the case x > 0 it is convenient to use Eq. (4.17b) for evaluat-

ing g2{x). Since K+ (£) is non-vanishing in the UHP, g2(x) will be simply the sum of the

residues at the poles of the integrand which occur at Ch = i/3n , n = 0, 1, • • • . Carrying

out this straightforward computation we obtain in the limit

00 fo \2 p~anX

g»(x) = h~l £ - (o2 i a h*K , , (4.18)
n-o \aj (p„ + in ~ h )K+{ian)

where an = (/3l/h2 + it)1'2. In the particular case that the fluid is incompressible, i.e.

e = 0, 0„/an = h and Eq. (4.18) becomes

00 ^ ^—CLnX

g2{x) = h E a2 2 -L- r a \ > a- = P»/h- (4-19)
n=0 {n an + ih — h )K+{tan)

5. Numerical computations and discussion. In this section we shall only be con-

cerned with the case in which the fluid may be considered as incompressible, then g2{x)

is given by Eq. (4.19). In [2] a few values of g2{x) were computed for e = .01 and com-

pared to the e = 0 case; the amplitude and phase lag in the ground-water fluctuation

for e = .01 were slightly lower than for e = 0. Since e is however 0(10~4) we should

expect very little error in actually setting e = 0.

First let us determine when the shallow water theory solution given by Eqs. (3.5)

may be expected to be valid. In order for g2(x) as given by Eq. (4.19) to agree with the

shallow water solution it is necessary that a0 ~ (i/h)l/2 as h —» 0, and also that all the

coefficients of the higher order terms1 must approach zero. It can be shown with little

1We shall refer to the term exp ( —aox) in Eq. (4.19), which is the dominating term as x —* °=, as

the fundamental term.
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difficulty from an investigation of the transcendental equation C sinh Ch + i cosh

Ch = 0 that for small h, ft> ~ (ih)1/2 and hence a0 ~ (i/h)1/2. Also upon noting that for

small h, pn ~ mr for n > 1, it can be seen from Eq. (4.19) with the aid of the represen-

tation of K+ (ia„) given in Eq. (5.1) that all the coefficients of the higher order terms do

approach zero as h —» 0. Hence gt{x) as given by Eq. (4.19) does approach the shallow

water solution as h —> 0. To determine quantitatively when Eq. (3.5b) is valid we have

computed fia and a0 as a function of h. Also the ratios of the wave length predicted by

the shallow water theory, X = 2ir/(2HL)1/2, to H and that of the fundamental mode,

A0 = 2x//m(a0), to H have been computed. These results are given in Table 1 and

TABLE 1.

h is the dimensionless de-pth, X = 2jr(2flrL)1/a is the wave length for shallow water theory, X0 = 2irL/Im(ao)

is the wave length of the fundamental mode for finite bottom, theory.

Po <*o(« = 0) \/H Xo /H

-> 0

.25

.50
1.00
2.00
3.00
5.00

10.00
15.00

-+ (ih)11*

.3676 + i .3382

.5376 + i .4548

.8004 + * .5702
1.1828 + » .5832
1.3739 + i .4775
1.5033 + i .3090
1.5547 + i .1569
1.5638 + i .1046

1.4704 + t 1.3528
1.0752 + t .9096

.8004 + i .5702

.5914+ t .2916

.4579 +i .1592

.3007 + i .0618

.1555 + » .0157

.1043 +i .0070

17.76
12.57
8.88
6.28
4.85
3.97
2.81
2.29

18.57
13.81
11.09
10.77
13.16
20.03
40.04
59.83

graphically in Fig. 4. It appears from Fig. 4 that we may expect the shallow water

theory to be accurate over the entire range of a; for h < 1/4.

In order to compute g2(x) for various values of h it is necessary to cast K+(ian) into

a form more suitable for numerical analysis than that given by Eq. (4.16a). This can

be done in a straightforward manner by using the infinite product representation of the

gamma function. We obtain, when e = 0, that *

*•<»•> - {31(1+"•/<o/(i+Um')]T- <5-i)

In any actual numerical computation the infinite product in Eq. (5.1) is, of course, to

be replaced by a finite number of terms (recall that |8„ —> rrnr as m —-> °°). The number

of terms that is required to give an accurate answer is of course dependent upon h and ft,.

TABLE 2.

Pn(h = 2) 0n(h = 15)

1.1828 + * .5832

3.3106 + i .6499
6.3014 + i .3277
9.4248 + i .2138

1.5638 + i .1046
4.6886 + i .3234
7.8016 + .5749

10.8705 + i .9070
13.7139 + i 1.3629
16.1332 + i 1.4236
18.9644 + i 1.0572
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In this paper g2(%) was computed for h = 2 and h = 15. Values of /3n for h — 2 and

h = 15 are given in Table 2. Let us first consider the case k = 2. Then the real parts

of a0 and are given by .59 and 1.65 respectively hence we may expect the fundamental

term to give an accurate result for x > 2. Carrying out the necessary computations we

obtain

—- r](x, t) = .61 exp (— ,59a;) exp [i(ut — .885 — .292a:)] . .
<7i vo.zj

+ 0 [exp (— o^x)]; h = 2.

Fig. 3. Ground-water phase lag vs. distance inland, x. (Dotted lines indicate the expected correction

to the computed curves when all modes are considered)

In Figs. 2 and 3 the amplitude and phase lag in the ground-water fluctuation have

been plotted. The extrapolation of the results to x = 0 are indicated by dotted lines.

Actually it is not difficult to obtain another term in the series, but unless particular

quantitative information is desired for this value of h it hardly seems necessary to do

that. It might be mentioned that three terms were more than sufficient in evaluating

the infinite product in Eq. (5.1).

In the case that h = 15, the fundamental term can only be expected to be accurate

for x > 7. We obtain

— t) = .074 exp (— .104a-) exp [i(ut — 1.68 — .007a:)]
q1

+ 0 [exp (— ajx)]; h = 15.

In order to obtain results valid for x — 1 or 2 when h = 15 would probably require the

computation of three or four terms of the series. However in view of the results for

h = 2 and these results for x > 7 it is clear that the amplitude curve for h = 15 will lie

almost exactly on the curve given by the infinite depth theory2 (see Fig. 2).

2The amplitude and phase lag curves for h = have been taken from the results given in [2].
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Fig. 4. Dimensionless wave number vs. h; X is the wave length predicted by shallow water theory;

Xo is the wave length of the fundamental mode predicted by finite bottom theory.

It is interesting to note that the shallow water theory and finite depth theory predict

an exponential decay in x for the amplitude of the ground-water fluctuation; this is in

contrast to the algebraic decay, (like x'1), predicted by the infinite depth theory. Also

the phase lag predicted by the shallow water theory and finite depth theory continues

to increase with x, while that predicted by the infinite depth theory approaches 7r/2

with increasing x. (This is clearly illustrated in Fig. 3). That g2{x) as given by Eq. (4.19)

approaches the infinite depth result given in [2] as h —* , cannot be seen easily from

(4.19). However an examination of K(£) as given by Eq. (4.9) shows that as Ch —> <»,

K(£) —» i + (£2 + ie)1/2 which we might denote by This function is the one that

occurs in [2]. It is interesting to note that K„(£) has singularities of the branch point

type, and in the limit as e —» 0 these singularities will occur at the origin. This explains

the algebraic behaviour of rj(x, t) for h = <*>. In contrast for any finite value of h the

strip of analyticity of K(£) is finite even when e —> 0, and its singularities are poles

rather than branch points; hence the exponential sort of behaviour for rj(x, t) for finite h.

A plausible physical explanation for the fact that the amplitude curves for the

ground-water fluctuation lie continuously below one another as h decreases (see Fig. 2)

is the following. Imagine that our porous medium and fluid occupy the strip — H <

y < 0, — <» < x < oo. Suppose that we apply a uniform pressure on the half line y — 0,

— oo < x < 0; then fluid in the left half strip will be forced through the gap — h < y < 0

and the free surface given originally by y = 0, x > 0 will rise. The amount of fluid that

can be forced through this gap, and hence the effect that the pressure variation can have
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on the free surface, is proportional to the gap distance, h. So with decreasing h the

amplitude of the free surface fluctuation is lower and dies out more- quickly.
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