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—NOTES —

ON LINEAR PERTURBATIONS*

By AUREL WINTNER (The Johns Hopkins University)

If fit) and git) are continuous functions for large positive t, and if the solutions

of the differential equation

x" + f{t)x = 0 (1)

are known, how "small" must be the difference fit) — git) (for large t) in order that the

general solution of the differential equation

y" + g{t)y = 0 (2)

can be guaranteed to have the same asymptotic behavior as the general solution of

(1)? The literature consulted answers this question only under assumptions which

restrict (1) by certain conditions of stability.1 No such assumptions are made in the

following theorem (which, under stability assumptions, reduces to known results):

With reference to the coefficient function fit) and a pair x = u(t); x = v(t) of linearly

independent solutions of (1), let the coefficient function git) of (2) satisfy the following

condition:

f f ~ 9 I (I w I2 + I v T) dt < °°. (3)

Then every solution y = yif) of (2) is of the form

yit) = c<uit) + c2vit) + o(| u(t) | + | !>(<) |), (4)

where Ci , c2 are integration constants iwhich can be chosen arbitrarily). In addition, the

asymptotic relation (4) remains true on differentiation, that is

y'it) = c{a'it) + c2v'(t) + o(| u'it) | + | v'it) |), (5)

where ' = d/dt. The o symbol in hit) — jit) + o(| l:Q)\) means that k 0 for large t

and that ih — j)/k —> 0 as t —* .
The relation (4) reduces to y ~ ctu + c2v as / —* co if (l) is stable in the sense that

lim sup | xit)\ < oo, where holds for all solutions of (1). In this case, condition

(3) is certainly satisfied if

f / — g | dt < >». (6)

But the converse conclusion cannot be made (not even lim sup | .t(/)| < 00 is assumed

for x — u and x = v), since, when ait) and v(t') happen to be "small" (for large t), then

condition (3) requires of the "size" of the perturbation f — g substantially less than

what is required by the standard assumption (6).

*Received October 11, 1956.
lIn this regard, see A. Wintner, Quart. Appl. Math. 13, 192-195 (Sees. 2 and 5) (1955).
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What is more, the general theorem applies without any stability restriction of the

given problem (1). In fact, no matter what the coefficient and the general solution of

(1) (that is, the function / and two, linearly independent, solutions u, v) may be, the

perturbation / — g of (2) on (1) can always be chosen so small as to satisfy condition

(3), that is, so as to bring (2) within the range of the theorem.

The proof of the theorem will consist of two steps.

First, recourse will be had to an elementary lemma which goes back to Bocher2 and

which, in the binary case at hand, runs as follows: If the coefficients of a homogeneous,

linear differential system

p' = au(t)p + an(t)q, q' = a21(t)p + a22(t)q (7)

are, for large positive t, continuous functions satisfying

aih(t) | dt < oo; where i = 1,2 and k = 1, 2, (8)
/

then, corresponding to any pair ct , c2 of integration constants, the system (7) possesses

a unique solution (p, q) satisfying

p(t) —»Ci , q(t) —> c2 as t —» oo . (9)

Next, the following rule of Lagrangian "variation of constants" ( a rule which,

being purely formal in nature, requires only the continuity of /(t) and g(t) on a /-interval)

will be needed.3 Let two solutions, x = u and x — v, of (1) be so chosen that

their Wronskian u(t)v'(t) — v{t)u'(t) (which is always a non-vanishing constant) becomes

the constant 1, and define, in terms of the difference of the coefficient functions of (1)

and (2), a binary matrix function || aik{t) || as follows:

/a„ a12\ = (/ _ J- w> - A (1Q)

\a21 a22) \ u2 uv)

Then y(t) is a solution of (2) if and only if there belongs to it a solution (p, q) of the

case (10) of (7) in such a way that

y(t) = u(t)p(t) + v{t)q{t) (11)

becomes an identity.

In addition, this transformation of (2) into (1) is a "contact transformation," in the

sense that the following differentiation rule holds for (11):

y'(t) = u'(t)p(t) + v'(t)q(t) (12)

(in other words, up' + vq' vanishes for all t)*.

In order to combine this Lagrangian rule with Bocher's lemma, note that the case

(10) of the four conditions (8) is equivalent to the three conditions

J" |/— gr||ty|rf<<oo) where w = u2, uv, v2,

2For references, and for certain refinements, see A. Wintner, Am. J. Math. 76, 183-190 (1954).

3For a verification (and for a similar application) of this rule, see A. Wintner, Am. J. Math. 69,

262-263 (1947).
4See formula (34) in the preceding reference3.
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and that, since 2 | uv | g | u |2 + | v |2, the latter three conditions are equivalent to the

single condition (3). Accordingly, (3) assures the validity of the limit relations (9) for

the general solution (p, q) of the case (10) of (7). But (11) reduces to (4), and (11) to

(5), by virtue of (9).

This completes the proof of the theorem. Its assumption (3) is independent of the

choice of the two, linearly independent, solutions x = u(t), x = v(t) of (1) which occur

in (3). For, on the one hand, u(t) and v(t) cannot vanish at the same t and, on the other

hand, the ratio of | u*(t) |2 -f- | v*(t) |2 to | u{t) |2 + | v(t) |2 stays between two positive

constant bounds as t—* ®. This is clear from the fact that u*(t) = au(t) + bv(t) and v*(t)

= cu(t) + dv(t), where a, b, c, d are constants of non-vanishing determinant ad — be.

A particular, but interesting, case of the theorem results if condition (3) is strength-

ened so as to make possible the elimination of the solution pair (w, v) occurring in (3).

Such an elimination is made possible by using a well-known estimate, which was applied

in more general forms by Liapounoff5 and others (L. Schlesinger, G. D. Birkhoff, 0.

Perron)6 and which, when particularized to the case of (1), states that

| x(t) | < const, exp J | f(s) — 1 | ds] (13)

holds for every solution x(t) of (1). What then results avoids the implicit hypothesis

of the theorem, namely, that (1) has already been solved. In fact, the resulting corollary

of the theorem can be formulated as follows.

If the coefficient junction g{t) of (2) is so "close" (for large t) to the coefficient function

f(t) of (1) that

J I g(L) - /(<) I exp {j | f(s) - 1 | ds} dt < =», (14)

then the asymptotic behavior of all solutions y(t) of (2) and of their derivatives y'(t) is given

by (4) and (5), where c, , c2 is an arbitrary pair of integration constants and u{t), v(t) is a

pair of linearly independent solutions x(t) of (1).

In fact, if (13) is applied to x = u and x = v, then (3) reduces to (14).

A LEBEDEV TRANSFORM AND THE "BAFFLE" PROBLEM*

By C. P. WELLS AND A. LEITNER (Michigan State University)

1. Introduction. This note is concerned with the application of the Lebedev trans-

form to what we term the "baffle problem," i.e. the problem of sound radiated by a

vibrating circular disk in an infinite rigid baffle. The solution of this problem is not

new. It has been solved by Sommerfeld [1] in terms of cylindrical waves, using the

Hankel transform, and by Bouwkamp [2] and others in terms of spheroidal waves, using

series representation. However, the Lebedev transform offers an equally straightforward

method, representing the radiation in terms of spherical waves, and moreover is in

5E. Picard, Traiti d'Analyse, 3rd ed., vol. 3, 1928, p. 385.
6For the particular case (13) of the general theorem, see N. Levinson, Duke Math. J. 8, 2-3( 1941).
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