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and that, since 2 | uv | g | u |2 + | v |2, the latter three conditions are equivalent to the

single condition (3). Accordingly, (3) assures the validity of the limit relations (9) for

the general solution (p, q) of the case (10) of (7). But (11) reduces to (4), and (11) to

(5), by virtue of (9).

This completes the proof of the theorem. Its assumption (3) is independent of the

choice of the two, linearly independent, solutions x = u(t), x = v(t) of (1) which occur

in (3). For, on the one hand, u(t) and v(t) cannot vanish at the same t and, on the other

hand, the ratio of | u*(t) |2 -f- | v*(t) |2 to | u{t) |2 + | v(t) |2 stays between two positive

constant bounds as t—* ®. This is clear from the fact that u*(t) = au(t) + bv(t) and v*(t)

= cu(t) + dv(t), where a, b, c, d are constants of non-vanishing determinant ad — be.

A particular, but interesting, case of the theorem results if condition (3) is strength-

ened so as to make possible the elimination of the solution pair (w, v) occurring in (3).

Such an elimination is made possible by using a well-known estimate, which was applied

in more general forms by Liapounoff5 and others (L. Schlesinger, G. D. Birkhoff, 0.

Perron)6 and which, when particularized to the case of (1), states that

| x(t) | < const, exp J | f(s) — 1 | ds] (13)

holds for every solution x(t) of (1). What then results avoids the implicit hypothesis

of the theorem, namely, that (1) has already been solved. In fact, the resulting corollary

of the theorem can be formulated as follows.

If the coefficient junction g{t) of (2) is so "close" (for large t) to the coefficient function

f(t) of (1) that

J I g(L) - /(<) I exp {j | f(s) - 1 | ds} dt < =», (14)

then the asymptotic behavior of all solutions y(t) of (2) and of their derivatives y'(t) is given

by (4) and (5), where c, , c2 is an arbitrary pair of integration constants and u{t), v(t) is a

pair of linearly independent solutions x(t) of (1).

In fact, if (13) is applied to x = u and x = v, then (3) reduces to (14).

A LEBEDEV TRANSFORM AND THE "BAFFLE" PROBLEM*

By C. P. WELLS AND A. LEITNER (Michigan State University)

1. Introduction. This note is concerned with the application of the Lebedev trans-

form to what we term the "baffle problem," i.e. the problem of sound radiated by a

vibrating circular disk in an infinite rigid baffle. The solution of this problem is not

new. It has been solved by Sommerfeld [1] in terms of cylindrical waves, using the

Hankel transform, and by Bouwkamp [2] and others in terms of spheroidal waves, using

series representation. However, the Lebedev transform offers an equally straightforward

method, representing the radiation in terms of spherical waves, and moreover is in

5E. Picard, Traiti d'Analyse, 3rd ed., vol. 3, 1928, p. 385.
6For the particular case (13) of the general theorem, see N. Levinson, Duke Math. J. 8, 2-3( 1941).
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itself of considerable inherent interest. It has been applied by Kontorovich and Lebedev

[3] and by Oberhettinger [4] to problems of diffraction by a wedge, and by Leitner and

Wells [5] to the problem of a freely vibrating disk.

We use spherical coordinates r, 6, <p with the baffle in the plane 6 = tt/2 and seek

solutions, independent of <p, of

V2 u + k?u = 0, (1)

where k = 2ir/\, X = wave length, and u = u{r, 6), the velocity potential. The boundary

conditions on u are:

du _ (v,

dn \o,
a constant, when r < a, 6 = ir/2,

r > a, 6 = tt/2

where d/dn is the normal derivative, together with the radiation condition r(iku + du/dr)

—» 0 as r —» a>. We now try to represent u(r, 6) as:

u(r' ® = L fJLg^P-i+" (cos J^kr) d^> (2)

where PI/2+ll(cos 6) is the Legendre function, Ju(kr) the Bessel function, and g(p) an

unknown function of the complex variable n = a + ir. L is a contour in a strip of finite

width surrounding the imaginary n axis from a — i°o to <r + i The function g(n)

is to be determined by applying the boundary conditions to (2) and using the theorem

of Kontorovich and Lebedev [3] which states that if

<p(kr) = J MA(/i)e,'™/VM(fcr) dy., (3a)

then

TriA(ji) = f <p(kr)e~i*"/2H'll2>(kr) dr/r. (3b)
Jo

The conditions for validity of this theorem and other details can be found in the reference

given.

One now applies the boundary conditions to (2) only to find that the resulting A(/j)

is such that the conditions of the theorem are not satisfied and the integrals diverge

However, there is an analogous theorem [6] in terms of modified Bessel functions of

real argument which imposes considerably milder restrictions on A(/x). This suggests

making the transition fc = —iy, 7 real and positive, constructing a solution using the

modified functions I^iyr) and K^yr) and then returning to real k and the original

Bessel functions. Obviously the integrals would still diverge if the contour L remains

unchanged, but they will converge if L is first deformed to surround the positive real

H axis. This was recently demonstrated by Oberhettinger [4] and verified again by the

result of the present problem.

The representation of y.(r, 0) corresponding to real y is

rhu(r, 0) = fL ng(n)P-j+M (cos 6) IJyr) dp. (4)

The "baffle problem" can now be solved by means of the following Lebedev [6]

theorem: If
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•fiir) = nA(n)I„(yr) dn, (5a)

then

TriA(ji) = / <p(yr)K,,(yr) dr/r. (5b)
Jo

The conditions for validity are that A (#*) be an even function of fi, analytic in a strip

of finite width including the imaginary axis and of decay at least as fast as

| r exp (— 7r | r |/2), where e > 0.

2. Some properties of IM(yr) and K„(yr) as functions of /*. The functions I^yr)

and K„ (yr) with real argument yr are entire functions with an infinite number of simple

zeros [7]. For | n/yr | J>> |,

h(yr) = [(r-/2)7r(i + n)][i + OGT1)]. (6)

Hence Iu(yr) decays rapidly as Re // -> + 00 • On the left half plane, as Re n —> — <»,

it has T function-like growth since |/r(l + m) = — sin — n)/r. Along the imaginary

axis n = ir, I„(yr) has exponential growth as r —» ± oo.

The function K„(yr) is defined by

K,(yr) = (v/2)[I-„(yr) ~ I„(yr)]/sm (7)

As Re /x —> 00, I-^yr) is dominant and as Re n —* — <*>, I^yr) is dominant. Hence

K,(yr) has T function-like growth on both right and left half planes. Along the imaginary

axis K^yr) decays exponentially as r> ± °°. Asymptotic forms for I„(yr) and hence

for K„(yr) can, of course, be found from (6) using Stirling's formula for T(1 + n).

3. Solution of the "baffle" problem. We represent u(r,6) by means of (4) and enforce

the boundary conditions as modified by transition to real y:

r < a, r3/2i>|

r > a, 0 ]

mAGu)I*M dn. (8)

Here AGu) = g(n)P-i+li(0), where the prime indicates differentiation with respect to the

argument cos 6. The formal solution is given by the inversion integral (5b) •

niA(ji) = v [ r^Kjiyr) dr. (9)
J 0

The integral defines an even function of n and converges if p. is restricted to a strip of

half-width 3/2 about the imaginary axis. Within this strip A(m) is analytic and

-I a(m) | i/2/t3/2 as | t | —> «>. From this it is seen that A(ju) satisfies the conditions

of the Levedev theorem.

The integral (9) can be expressed in terms of the Lommel functions and they in

terms of their series representation [8]. Thus one can continue A (y.) into the remainder

of the plane where it is analytic except at the points n = ± (2n + 3/2), n = 0,1, 2,

• • • , where it has simple poles with residues [21/2 v( — )"i/iry3/2] [r(n + 3/2)/n!]. For

Re ju —> rt =o, we find also that A(m) ~ (3/2 ± n) sin t?h- We now have A(/i)

defined for the entire n plane and are ready to convert the integral (4) into an eigen-

function expansion.
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Substituting for g(n) in (4) gives

, Mr, d) = Jl mA(m) h(yr) dfX> (10)

in which MOO I*(yr) ~ (r/a)"/M for large n on the right half plane. Further the ratio

of the Legendre functions behaves like e<9-r/2)" when 6 < x/2 the only values of 0 in

our problem. Hence for r < a the contour r may be closed on the right and the integral

is unchanged in value. The poles of the integrand are at 2n + 1/2 and 2n + 3/2 and the

series of residues is the eigenfunction representation for the region r < a.

For r > a the contour of (10) in its present form can not be closed. However the

decomposition

A(m) = (t/2)[X(— h) — X(m) ]/sin xju

allows the contour to be closed. Then

7ri\(n) = v [ r^I^yr) dr, (11)
Jo

and, by arguments similar to those used above for A(^) we find \(n) to have poles at

— (2n + 3/2), analytic in the strip with growth like Itt(ya)/(3/2 — n), for large n.

We now have

Mr, e) = JL mm Khr) d», (12)

where M(m) Ku(yr) n1 ("/a)'", | m | —> °°- Hence the contour can be closed on the

right for r > a. The poles of the integrand lie at 2n + 1/2, whose residues lead to the

appropriate series of eigenfunctions in the space r > a. One sees now how the transition

from integral representation to series of appropriate eigenfunctions resolves itself. When

the transition from real y to real k is made we see that the expansion will be in terms

of Bessel functions for r < a, in terms of Hankel functions for r > a.

For completeness we record the eigenfunction expansion:

00 03

r < a: u{r, 6) = X) anP2n+1 (cos d)j2n+1(kr) + ^ (cos d)j2n(kr),
n —0 n« 0

CO

r > a: u(r, 6) = ^ c„P2n (cos 6) hlV(At),
n = 0

where j and h stand for the spherical Bessel and Hankel functions and

a„ = (2v/k)(2n + 3/2)(- 1)",

bn = (2)W(2n + |)(- l)n+1[r(n + %)/n\]W[H%+i{ka), sh2n^ka)),

pka

cn = (\{2)\v/k){2n + J)(— l)"[r(n + $)/n\] / xiJ2n+i(x) dx,
Jo

where W stands for Wronskian and Sj,2„+$ is a Lommel function [8]. Note that for r > a

only the Legendre polynomials even in cos 6 appear, as required by the boundary con-

dition.
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GEOMETRIC INTERPRETATION FOR THE RECIPROCAL
DEFORMATION TENSORS*

By C. TRUESDELL (Indiana University and Universitd. di Bologna)

In a finite deformation x = x(X), changes of infinitesimal lengths may be measured

by the tensor C, where

ds* = gtm dx" dxm = CKM dXK dXM, CKM = gkmx W , (1)

or by the dual tensor c satisfying formulae that follow by systematic interchange of

majuscules and minuscules. Geometric interpretations of C and c have been given by

Cauchy and others. In 1894 Finger introduced the reciprocal tensors C"1 and c-1, and

recent exact work on isotropic elastic bodies employs them often. While formulae such as

{C-yM = gkmXRkXMm (2)

for their expression and use are known, geometric interpretation has been lacking.

As is known, the correspondence between elements of area is given by dahm = xhtK xmM

dAKM, where dAKM is connected with the usual vector element of area dAK by dAK =

VKMpdAMP, Ckmp — (det Gqr]^' £kmp- Hence

(da)2 = elM%x!Qx:Bx'.s dAFQ dA«s,

= gkm(hlr,eKRSx:Bx:s)(hmPQ<MPOxPPx?Q) dAK dAM ,
aet Ijuv ^

d.6t Quv J d^X j X j X ) I Jcm-vKxrM j \ j \

det Gur IdOr, X2, X3)] 9 X'kX'm dAK dAM 1

= [det (C-'JSl-'CC-1)'" dAK dAM .

Comparing this result with (1) shows that the tensor C_1/det C-1 measures changes

of the magnitudes of infinitesimal areas in precisely the same way as C measures changes

of infinitesimal lengths.

A known principle of duality, which may be called the first principle of duality,

'Received Dec. 4, 1956. This work was done under a National Science Foundation grant to Indiana

University.
'A formula which is essentially the next to last step in (3) was given by Tonolo, Rend. sem. mat.

Padova 14, 43-117 (1943), Sec. V. 4, but he did not mention any connection with C_1.


