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1. Introduction. The numerical solution of boundary value problems for partial
differential equations usually requires the solution of large systems of linear equations.
The order, n, of such systems is essentially equal to the number of mesh points in the
domain under consideration. Since direct inversion procedures require the order of n3
operations they are not practicable, even using high speed digital computers, for reason-
able meshes in two or more dimensions. Thus iterative methods for solving linear systems
are of great interest as they usually require the order of n2 operations. In addition the
coefficient matrix of the system which results from the finite difference approximations
has many strategically placed zeroes. However, no special account of these zeroes is
taken in most direct inversions or in general iterative procedures. It is reasonable to
expect that particular methods, designed in accordance with the general structure of
the coefficient matrix, could further reduce the number of operations. Many such special
iteration schemes have been devised and conditions on the coefficient matrix which are
sufficient to insure the convergence of some of these methods have been obtained [1, 7, 9].
However there is no general comparison procedure to determine which of many possible
methods is "best" in a given case.

In the present paper we formulate a family of iterative schemes for a particular
class of coefficient matrices (in which the zeroes are placed as in the usual fiye-point
Laplace difference equations). This family is defined by a generalization of the usual
notion of extrapolation or over-relaxation. It is then possible to formulate the problem
of finding the "best" scheme and, more important, some general theorems on the eigen-
values of these schemes are proved.

The theorems are used to define three subclasses, called complete image classes, of
the general family. These classes contain many of the schemes in current use as well as
generalizations of them. Thus it is shown that a variety of independently proposed and
seemingly unrelated iterative methods are special cases of a general class of methods.
These complete image classes are such that each of the eigenvalues of any scheme in
the class is a given function of one of the eigenvalues of a particular reference scheme
of the class. Thus a knowledge of the eigenvalues of the reference scheme permits, in
principle, the determination of the best scheme of the given class.

A special class of equations is considered for which all the eigenvalues of each reference
scheme can be explicitly written in terms of the eigenvalues of two matrices. It is then

*Received June 10, 1957. The research reported in this paper was performed under Contract AT
(30-l)-1480 with the U. S. Atomic Energy Commission.
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possible to determine which of the reference schemes is best and hence it is also possible
to determine that scheme which is best of all those in the complete image classes.

As an example of the application of this general theory the Laplace difference equations
are considered. The well-known results on rate of convergence for the Richardson, Lieb-
mann and extrapolated Liebmann methods are immediate consequences. Analogous re-
sults are obtained for the less well-known "line" methods* which are shown to be superior.

It is clear that the methods of the present paper can be applied to more general
iterative schemes than those considered. In addition many of the present results can be
easily extended to problems in higher dimensions and with more general boundaries.

2. Formulation. A large class of two dimensional linear elliptic difference equations
are of the form:

<t>ii 1" l/^i + 1,1 —1 tijfyi ,1+1 = Sij J (2.0)

within a coordinate rectangle specified by 1 < i < p, 1 < j < q. On the boundaries of
the domain equations of the form (2.0) hold with the coefficients:

hi =«"»/ = 0, 1 < j < q; ba = tia = 0, 1 < i < p. (2.1)
Such equations are obtained from second orderf elliptic partial differential equations by
applying the usual second order difference approximations on some (^ordinate mesh,
(£,• , ij;). The coefficient matrix of the resulting system, (2.0) and (2.1) must be non-
singular and, with a little care in differencing [1], can be made positive definite (and
symmetric if the equation is self adjoint). However, we shall assume, unless otherwise
stated, only the non-singularity.

For convenience of notation and discussion we introduce, for each j, the p-dimensional
column vectors:

4>li

4>2 i

and the p X p order matrices: [<ppi

0 0

lij 0
Izi o

L, = -0 , Rs =
• 0

• 0

. 0 L, 0

S,- =

V
0 Tij 0

(2.2)

0 r2i

fp-\ ,i

0 0

, 1 < J < q; (2.3)

*The origin of iterative line methods is obscure. They have been in use by Russian mathematicians
for a number of years. About 1945 J. von Neuman and L. H. Thomas independently proposed line
methods for parabolic difference equations. An independent investigation was initiated by M. E. Rose
and the present author in 1953 and some of the results of Sec. 8 were then obtained. Peaceman and
Ratchford have studied their applicability to parabolic difference equations and double-sweep iterative
solutions of the Laplace difference equations.

tThe five point scheme implied by (2.0) assumes no mixed partial derivates in the equations.
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^1/

1 < j < q; Ti =B, =

bu 0
&2i

0
PI J

1 < j < q-

lo
The system (2.0-.1) can now be written as

(/ - U - Ri)* 1 - T& = S1 ;
1 + (/ - Lj - R,)*, - 7>,+1 = S,- , 2 < j < q - 1; (2.4)

(I — — Ra)<!>, = .

Here we have introduced the identity matrix, I, which is always assumed to be of the
same order as the square matrices to which it is added.

Further simplification is obtained by introducing the (p X <7)-dimensional column
vectors* (or g-dimensional compound vectors):

$

'f'

$2 <t>21

.^pq-

s =
S1

s2

sa

S11

$21

-Spa

(2.5)

and the [(pq) X (pg)]-order matrices (or \q X g]-order compound matrices):

L a

u 0
u R =

B =

.0 Lj
0 0"

B2 0

B3 0

T =

Ri 0
R2

0 Rq
0 T,

0 T

(2.6)

0 Ta

.0 B, 0J 10 0
The system of linear equations (2.0-.1), or (2.4) now becomes

= (J - L - R - B - T)$ = S. (2.7)
Similar formulations may be introduced for more general boundaries and in higher

dimensions. In particular, if the boundaries are composed of coordinate segments, the

*The vector $ of (2.5) determines an "ordering" [1] of the unknowns, ; but this order need bear
no relationship to the sequence in which the iterative computations are carried out.



212 HERBERT B. KELLER [Vol. XVI, No. 3

matrices L,- and Rt remain square but of different orders while the matrices Bt and jP,-
become rectangular. Another pair of "neighbors", , appear in (2.0) with each unit
increase of the dimension and, correspondingly, additional pairs of matrices must be
introduced in a manner similar to those of (2.6).

3. General single sweep iterations. We summarize here some terminology and
known results for a class of iterative methods for solving (2.7); this class is defined as
follows: Let the coefficient matrix, M, be written as

M = N — P, (3.0)
where | N | 5^ 0. We call this a "splitting" of the coefficient matrix and the system
(2.7) becomes

+ S, (3.1)
with the formal solution

$ = (N - Py'S = (7 - N-'Py'N-'S. (3.2)
The iterative procedure is defined, starting from some arbitrary guess, 3>(0), at the solution
vector, by the recursion

iV$(" = P$('-u + S. (3.3)

Thus in one sweep through the mesh a new iterate is obtained. Applying (3.3) recur-
sively yields for the ?th iterate

= [7 + (AH1?) + (N-'P)2 + ■■• + (N-'Py-^N-'S + (AT1?) V0). (3.4)

Thus [2] —» $ as v —* <», for arbitrary <t)(0), if and only if

Lim (N^P)' = 0. (3.5)
*-♦00

This condition is satisfied provided some appropriate norm [3] of (N~'P), say the spectral
norm, is < 1.

This result is more frequently obtained by introducing the sequence of error vectors
Ew = $ - (3.6)

which, by (3.1) and (3.3), must satisfy the homogeneous recursion

NEW = PE^"X\ v > 1. (3.7)

The eigenvalues, \k , of N~lP are the (pq) roots of the characteristic equation

| \N - P | = 0. (3.8)
If they are distinct* there then exists [4] a complete set of eigenvectors, ek , satisfying

\kNek = Pek , (3.9)

which span the (pq)-dimensional vector space. Thus any initial error, E!0>, has a unique
expansion in these eigenvectors of the form

VQ

Em = £ akek . (3.10)

*It is sufficient here to assume that all the elementary divisors [4] of (N lP) are simple.
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By (3.7) and (3.9) the above yields, for the cth error vector,
PQ

EM = E Ajotf* . (3.11)

In order that <t>! ^ —> $ it is necessary and sufficient that E(v) —> 0. Thus by (3.11) and
the completeness of the eigenvectors, convergence is equivalent, for arbitrary initial
error*, to

Xm.* = max | Xfc | <1. (3.12)
k

Let us require that the most slowly decaying component in the cth error, (3.11),
be reduced by at least 10~m, where m> 0. Then we must have < 10~m and the number
of iterations required is bounded by

v > — m/logXmai = m/R. (3.13)

This result is valid only when (3.12) is satisfied and then R = —(log Xm8I)_1 is called
the rate of convergence. This quantity is useful in comparing different iterative methods
as the number of iterations required for some specified convergence criterion varies as
R~\

If the elementary divisors of N"1P are not simple, condition (3.12) still suffices for
convergence but the bound (3.13) does not apply. To obtain such a bound we assume
the elementary divisor of largest order corresponding to X,„ax = | XL | say, is of order
r + 1. Then the expansion (3.10) must be replaced by [4]

r + 1 r r + l-k / \ ~~j PQ

= E E ra,H k+ E y^ek (3.14)
Jfc = l L « = 0 \o/ J fc = r+ 2

provided v > (r + 1) (and assuming all other divisors to be simple). The largest decay
factor is now given by, for v > (r -\- l)Xmax + r,

v-r

* \r/'

and to reduce the error by at least 10 m requires

(") < lo-.

An approximate bound on the number of iterations which may be obtained from this
inequality, is

v > m'/R + r + (r/2R) log [(m'/R + r)m'/R], (3.15)

where m' = m — log r!. The number of iterations required for convergence is now not
simply proportional to R-1 but this result is asymptotically (for m —> <») equivalent to
(3.13). For practical computations the discrepancy may be significant.

A large rate of convergence should not be the only criterion in evaluating iterative
methods. Rather a measure of the time required (by human and/or machine effort) to
achieve the desired accuracy should be employed. This time is essentially proportional

*For a special initial error in which the amplitude of some particular component vanishes, say
oi = 0, the corresponding eigenvalue, Xi, is unrestricted. However, even if such initial distributions could
be determined, computations with roundoff would undoubtedly introduce this component at an early
stage of the iterations and it could become arbitrarily large if (3.12) is violated.
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to the total number of arithmetic operations (property weighted). Thus if we let Nop
be the operational count required for each iteration [i.e. to solve (3.3)], the total time is
proportional to [assuming (3.13) to be valid],

T m NJR. (3.16)
The "best" of the single sweep methods is that for which T is minimized. Of course in
more general procedures a similar criterion should be employed.

4. Special single sweep iterations and generalized extrapolation. With the above
notions in mind we consider the special class of splittings

2V(y) = y01 — yxL — y2R — y 3B — y 4T, P(y) = N(y) — M, (4.0)

where the real numbers 7, are restricted by the conditions that

a) | N(7) 1^0, b) 71727374 = 0. (4.1)

This defines a subset r of the five dimensional Euclidian space of all points 7. The
iterations are defined by

N(y)&'> = P(7)$("~1) + S. (4.2)

Thus any point 7 e T determines an iterative scheme given by (4.0) and (4.2); we shall
sometimes refer to this as the scheme 7. The class of schemes, T, is important since it
includes many known and frequently used schemes while the data arrangement required
for all of these schemes is well suited for automatic computing machines. Furthermore,
the solution of the system (4.2) is obtained explicitly when 7 t T in one sweep over the
mesh by solving either two-term or three-term recursions. In particular if either 7o7i72 ^ 0
or 7o7374 ^ 0 three-term recursions are introduced along horizontal or vertical mesh
lines. The solution of these recursions may be reduced, by the well-known factorization
of a Jacobi matrix, to the evaluation of two, two-term recursions along the appropriate
lines. If two or more of the 7, 5^ 0 the method of sweeping the mesh to solve (4.2) in
one sweep is partially determined (i.e. the sweep must start at a particular corner or
with some line next to a boundary).

The operational counts, NOB(y), required to solve (4.2) for any of the schemes 7 t T
vary at most by a factor less than two. The minimum number of operations needed is
four multiplications and five additions at each mesh point and the maximum required
is seven multiplications and six additions (neglecting the operations done only once in
factoring the matrix of Jacobi form). The special subclasses of T introduced in Sec. 6
require at most six multiplications and five additions at each point. Thus in the remainder
of the paper we shall assume the operational counts to be almost equal and in seeking
the "best" scheme we shall consider only the eigenvalues.

The eigenvalues of a scheme such as (4.0) to (4.2) are the roots X of the characteristic
equation

| my) - P(y) I = 0;
or explicitly, of the equation

A = | g0I - g^L - g2R - g3B - gtT \ = 0, (4.3)
where

gt ^ y({\ - 1) + 1, 0 < i < 4.
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Each root, A* (7), is thus a function of the scheme, 7, and a problem naturally suggested
is to find a 7* e T such that

Amax(7*) = min (max | A*(7) |). (4.4)
7 f r k

The solution of this problem would yield, essentially, the best iterative method of the
class considered. The usual notion of extrapolation (or over-relaxation) of the scheme
7* is meaningless, by virtue of (4.4), since no improvement on rate of convergence can
be obtained. In fact the usual extrapolation techniques may be viewed as attempts to
find the solution of (4.4) when 7 is further restricted to lie on some particular curve in r.
This is in fact shown to be the case in Sec. 6 and the curve, in the usual extrapolation
procedures, is a straight line. The problem posed in (4.4) is thus a generalization of
extrapolation in which the values of four extrapolation parameters are to be obtained
[since, by (4.1b), r consists of four four-dimensional subspaces].

In order to obtain some idea of the possible behavior of A (7) we consider schemes 7
011 the "diagonal" line *>

7o = 7i = 72 = 7s = 74 = !/«• (4-5)

These points do not lie in I' and, obviously, taking a — I implies direct inversion of M.
However, to gain insight, we use (4.5) in (4.3) and obtain the characteristic equation:

1 (A - 1) + 1
a

M = 0.

Since, by assumption, \ M \ ^ 0, there is only one eigenvalue (with multiplicity pq)
and it is

A = 1 — a.

Thus along the diagonal line (4.5) all schemes converge for 0 < a < 2 (i.e. 7, > 1/2)
and diverge otherwise (i.e. 7; < 1/2). Only one iteration is required for a = 1, as then
X = 0. It might be suspected that the best scheme in F is obtained by taking a point
nearest this unit point [a = 1 in (4.5)]. That this is not the case is a simple consequence
of the results of Sec. 6. The eigenvalues of the above example become arbitrarily large
in absolute value as a —»• ± °° and the point 7 approaches the origin; the roots approach
unity as a —> ±0 and the point 7 recedes to infinity. It should also be observed that these
eigenvalues are independent of the matrix M.

5. Some properties of the eigenvalues, X(7). We present here some theorems which
can be used to compare the eigenvalues of various schemes 7. All of these results are
simple consequences of the

Fundamental theorem,-. Let L, R, B and T be arbitrary matrices of the form (2.6),
(2.3). Then for any non-zero scalars x and y.

M\ = \I — L — R — B — T\ = I - xL--R-yB--Tx " y (5.0)

Proof. Let the elements of M be Mr, where 1 < r, s < N = pq. Then each term in
the formal expansion of | M \ is given by [5]

±^l,ir(l)A^2,ir(2) ) (5-1)

where x is one of the AM permutations of the first N integers. Let each point (i, j) of
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the original rectangular mesh (see Fig. 1) be identified with a unique integer r =
(; — l)p + i, and represent any permutation ir by the N vectors from r to w(r) on this
mesh. By the definitions (2.6), (2.3) and (5.0), ikfr,T(r) ^ 0 only if x(r) = r or the point
corresponding to 7r(r) is an adjacent neighbor of the point r. Thus the only permutations
which lead to non-vanishing terms (5.1) are those whose geometric representation is
composed entirely of unit vectors in the (±i)- and (±;)-directions and null vectors.
However, any permutation is a product of disjoint cycles [5] and the representation of
a cycle is a closed path on the mesh. Thus for non-vanishing cycles there are the same
number of unit vectors in the (+«)-direction as in the {—%)■-direction and similarly
for the (±i)-directions (see Fig. 1). Since Mr,r(r) is an element of L if w(r) = r —. 1,
and an element of R if ir(r) = r + 1, there are as many factors from L as from R in
each non-vanishing cycle. A similar result is true of factors from B and T. Thus each
non-vanishing term in the expansion of the right hand determinant in (5.0) is independent
of x and y and the proof is complete.

J

• • • • • •qp
f +2p . .

/-I -IT

r-p

•IP

Ptl •••••••• »2p

J •* • • !

Fig. 1. Geometric representation of a non-vanishing cycle. In the permutation of, n —»7r(n), which this
cycle is a factor the cycle is given by:

7T(r) = r + p, T-(r + p) = r + 2p,   ir(r - 1) = r.

The geometric form of the above proof was suggested by D. Ludwig. Another proof
has been given by B. Friedman [8]. However, the geometric proof clearly indicates
that the same result can be proved for a matrix which represents the difference equations
on any connected region bounded by coordinate segments. In higher dimensions the
analogous theorem, obtained by adding two more matrices to M for each additional
dimension, is easily proved. A special case of the above theorem, namely that obtained
by setting x = y in (5.0) has been proven by D. Young [1], Many of the remaining
results in this paper hold for any matrix M which can be written in the form (2.7) such
that (5.0) is satisfied for arbitrary x and y.

The first, almost obvious, consequence of the fundamental theorem is contained in
Theorem I. Let \(y) = X(y„ , 7, , y2 , y3 , yt) be any eigenvalue of the scheme y. Then

for all y:
\(y) = X(yo , 7a , 7i , Ts , 7<) = MYo , Yi , 72 > 7« > Ys)- (5-2)
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Proof. The eigenvalues X(y) are the roots of the characteristic equation (4.3). How-
ever, by the fundamental theorem we have

A = g0I - xg,L -\gjt - yg3B - \ gtTx y

and taking x = (g2/gi)1/2, y = {gJg3)U2 the above yields*

A = \g0I - M1'2 (L + R) - (g3gi)u2 {B + T) |. (5.3)

Thus the roots of A = 0 are invariant under the interchanges ji y2 and y3 <-> y4 .
In terms of iterative procedures of the class (4.2), Theorem I indicates that various

ways of sweeping the mesh yield identical rates of convergence. In terms of the subspace
r the theorem states that there are certain two-dimensional planes with respect to
which the eigenvalues are symmetric. Thus the volume of T which must be searched
for a best scheme, 7*, is reduced by a factor of 1/4. Furthermore it is of interest to note
that along the two-dimensional planes 7, = y2 and 73 = 74 the eigenvalues X(y) must
have relative maxima or minima with respect to the appropriate pair of coordinates.

A somewhat more general result which contains Theorem I as a special case is con-
tained in

Theorem II. Let X'(y') be some particular eigenvalue of the scheme 7'. For any
scheme 7 let X(7) be a function such that

(j7.Y = M| = Ms^0 (5.4)
W 0102 0304

where g'i and 0,- are respectively the functions of (X', 7') and (X, 7) defined in (4.3).
Then X(y) is an eigenvalue of the scheme 7.

Proof. Form the determinant A of (4.3). Then as in the proof of Theorem I we obtain
(5.3). Using (5.4) this becomes

A = r I g'j - MY'XL + R)~ {gigiY'XB + T) | = f A',
by another application of the fundamental theorem to the scheme 7'. However, since
X'(7') is an eigenvalue of 7' we have A' = 0. Thus A = 0 and X(7) must be an eigenvalue
of 7.

The schemes 7 and 7', and the eigenvalues X(7) and X'(y') of the theorem will be
called images of each other. We sometimes refer to 7' or X'(7') as the reference scheme
or reference eigenvalue respectively. It is clear from (5.4) that the relationship of being
images is a transitive one. Some consequences of Theorem II are examined in the remain-
ing sections.

Another theorem which is quite useful for some special difference equations is
Theorem III. Let the matrices (2.6) be such that (L + R) (B -(- T) = (B -f T) (L + R).

Then as is well known these matrices have common eigenvectors; let pk and nk be the
eigenvalues of (L + R) and (B + T) respectively, corresponding to the common eigen-
vector ek . Then each eigenvalue of any scheme 7 is a root, for some k, of the (at most
4th degree) equation**

00 (0102) Pk (0304) Mi == 0. (5.5)

*The chosen branches of the square roots are arbitrary and hence all future applications of (5.3)
could be written in any of four ways.

**As pointed out in the proof of Theorem I there are four such equations which could be used. This
point is clarified in Sec. 7 where more of the consequences of the hypothesis are examined.
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Proof. Let \(y) be some fixed but as yet unspecified eigenvalue of the scheme 7.
Then from (4.3), A = 0, and as in the proof of Theorem I, we have from (5.3)

I 9oI - {gig,)u\L + R)~ (gsg^B + T) | = 0. (5.6)
Thus the matrix in (5.6) is singular and has a zero eigenvalue. Applying this matrix to
ek we see that

ft = ffo — (ffiffe) Pk — (fad*) '
is an eigenvalue belonging to the eigenvector ek . Using all the ek we obtain all of the
eigenvalues of the matrix in (5.6). However at least one £* = 0. Since \(y) was any
eigenvalue of the scheme 7 the theorem follows.

This theorem is applied generally in Sec. 7 and to the usual Laplace difference equa-
tions in Sec. 8.

6. The complete image classes. The pairs of image schemes defined by Theorem II
are such that only one eigenvalue of any y need be the image of one eigenvalue of the
reference scheme, y'. However, of special interest are those schemes each of whose
eigenvalues is the image of a corresponding eigenvalue of some particular reference
scheme. Such classes of schemes are called complete image classes and we proceed to
obtain three of them. The intersections of these classes with the subspace T is grouped
into five subspaces: rx , rB , IV , Yc and IV , of which IV and IV are considered
uninteresting.

The class . In order that any two schemes y and y' be images, (5.4) must be
satisfied by the corresponding pair of image eigenvalues. However, let us seek first
schemes such that

¥* - ¥? (6.0)
9x92 g3g*

is an identity in the indeterminates X and X'. This requires

a) J TlT2 = 7374 b) J 7172 = 7374 ^ ^

I7i + 72 = 73 + 74 , 17? + 72 = 73 + 7i •

Now let X' be any eigenvalue of a scheme 7' which satisfies (6.1b). Then if 7 is any
scheme satisfying (6.1a) every root X of

=¥7 (6.2)
gJ 0102

is an eigenvalue of 7 by Theorem II. Since (6.0) is satisfied for any X and X', each equation
(6.2) obtained for a different eigenvalue X' of 7' determines at least one eigenvalue X of
the scheme 7. Thus all schemes 7 satisfying (6.1a) belong to the same complete image
class, say class A. Since the conditions (6.1a) and (6.1b) are identical any 7 t A may be
used as the particular reference scheme. We call the chosen reference scheme yA and
take it to be

7^:70= 1, 7i = 72 = 73 = 74 = 0.

This is a simultaneous displacement method commonly known as Richardson's method.
Thus each of the eigenvalues of any class A scheme is the image of one of the Richardson
eigenvalues.



1958] ITERATIVE METHODS FOR ELLIPTIC DIFFERENCE EQUATIONS 219

The class A schemes of interest are those contained in I\ From (4.1) and (6.1) we
obtain the set of all such schemes, , and they are listed in Table A. The real parameters
a and /3 are to be restricted such that (4.1a) is satisfied. The set lies on four two-
dimensional planes in r, one of which is, say: y2 = yi = 0, yx = y3 . By the symmetry

Ta

7A

70

1 /a

\/a

1/a

l/«

71

1/0

1/0

72

1/0

1/0

73

1/0

1/0

1/0

1/0

TABLE A

property of the eigenvalues, expressed in Theorem I, we need examine only one of these
four planes. However using any y e rA and yA in (6.2) yields

[X — (1 — a)]2 = |M[\ — (1 — 0)]. (6.3)

This equation furnishes the mapping of the eigenvalues \A of yA (Richardson) onto the
eigenvalues X of any of the schemes in rA .

If we choose a = /3 = 1 in any y t rA the resulting scheme is a successive displace-
ment method commonly known as a Liebmann scheme, in the present connection, or
more generally as the Gauss-Seidel method (see Table I). The mapping (6.3) yields

X = XI , or X = 0. (6.4)

Thus some X^ go into zero and others into their squares. These schemes converge, as is
well known [7], if the Richardson scheme converges, and the rate of convergence is
twice as large (see Sec. 3).

If we set j3 = 1 in any y e rA the resulting scheme is a successive overrelaxation [1]
method where a is the overrelaxation parameter (see Table I); this method is frequently
called the extrapolated Liebmann scheme [6]. The schemes y, in this case, lie along four
lines in , for example: y2 = yt = 0, Yi = y:i = 1. The mapping (6.3) becomes

[X - 1 + «]2 = a\l\, (6.5)

which has been studied thoroughly [1],
Taking a — 13 in any y t yields a different successive overrelaxation method;

this corresponds to using successive displacements (Liebmann) over the entire mesh
and then extrapolating (or interpolating) the provisional new iterate with the old iterate.
The mapping (6.3) becomes, in this case,

X = 1 - «(1 - Xj), (6.6)
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which is easily analyzed. If the XA are all real and XmaiiA < 1, then Xm« is minimized by
taking

a = [1 — 2(^la*,A + XLn.x)] \

where Xmin,A = mint | Xt(7x) |. This method is the analogue of the case treated at the
end of Sec. 4; it is called a full-mesh extrapolation.

If all of the eigenvalues XA are real and Xmax,A < 1 the general mapping (6.3) can be
analyzed. It is found, in this case, that the best of the class A schemes is extrapolated
Liebmann. However, in other cases, it seems possible to improve upon the Liebmann
extrapolations. The analysis of this mapping has been done by K. Gordis and will be
reported in a future paper.

The class T B . Proceeding as in the previous case we now require

(So V =
\Qo' Qidz\{7o' QlQt

to be an identity in X and X'. This is equivalent to

a) 7o = 7i = , b) y'0 = 71' = y'2 . (6.7)

Using (4.1b) these relations yield the indicated classes rB and rB. of Table B.

rB

IV

■yb

70

1/a

1 /«

71

l/«

l/«

72

l/«

1/a

y»

1/3

1/a

74

1 /P

1/13

TABLE B

The canonical reference scheme, yB , included in the table is a simultaneous line-dis-
placement method; by its analogy with yA we shall call it a line-Richardson method.
The classes of schemes r B and IV lie on three two-dimensional planes in T. As before
if we take XB to be any eigenvalue of 7B then by Theorem II any root X of

?3g4 _ (£o

iWi \<7o
did*
9394 \9o

is an eigenvalue of 7 e rB (or rB.) of the table. Of course the appropriate 7 £ rB (or IV)
is to be used in the g, . Using 7 e rB and 7B of the table this yields

[X - (1 - a)]2 = |xj[x-(l -/?)]; (6.8)

the same mapping (6.3) as in the schemes. However, the reference schemes yA and yB
are not images of each other and thus we cannot, in general compare their eigenvalues. In
Sees. 7 and 8 special cases are considered in which XA and XB may be compared; it is
then clear that some schemes in rB are better than the best scheme in .

All of the simplifications (6.4-6) are shown to apply for 7 e rB by choosing the
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same special a and as were chosen for 7 e rA (see Table I). Thus we may call 7 =
(1, 1, 1, 1, 0) "line-Liebmann", and 7 = (1/a, 1 /a, 1 /a, 1, 0) "extrapolated line-Lieb-
mann" and their eigenvalues have exactly the same relationships to the line-Richardson
eigenvalues as the eigenvalues of ordinary Liebmann and extrapolated Liebmann have
to those of ordinary Richardson.

The remaining class of schemes, IV , yield the mapping

[X - (1 - a)][A - (1 - 0)] = a/3Xj . (6.9)
This result has been examined and is in general found to be inferior to that of (6.8).

The class Tc . This class is determined exactly as the previous one by interchanging
("Vi , Y2) with (73 , 74). The mappings (6.8) and (6.9) are obtained for the corresponding
classes Tc and IV • The canonical reference scheme is yc = (1, 0, 0,1, 1), a line-Richard-
son method, which is not an image of 7A or yB . In the special cases of the next two sections
it is possible to compare XB and Xc and thus to determine which of the classes, rB or
rc contains the best scheme.

The essential difference between rB and Tc schemes is the direction of the line along
which three-term recursions must be solved. In all rB schemes they are parallel to the
direction of increasing i and in rc parallel to the direction in which j increases.

7. Reference eigenvalues for a special class of equations. We consider here those
systems of the form (2.2) to (2.7) for which (L + R) and (B + T) commute. Then the
fundamental theorem and Theorem III are valid. However, before applying these
results we shall examine some other very important consequences of commutativity for
matrices of the indicated forms.

By using the forms (2.6) in

(L + R)(B + T) = (B + T)(L + R)
we obtain the conditions

(L, + R,)Bj = Bj{Lj-1 + R,-0, 2 < j < q,
(L,- + Rt)T, = T,(Li+1 + Ri+1), 1 < j < q - 1.

These conditions are necessary and sufficient for commutativity. With no loss in gen-
erality* we may assume | B, \ ^ 0 and | T,- \ 9^ 0 in which case the above conditions
become

(L,- + R,) = ' % < i < Q, (7.0)
It,(l,+1 + R.-^t;1 , 1 < j < q - 1.

Since the (L, + R,) are all similar they have the same eigenvalues and elementary
divisors; and as the order of these matrices is p X p there are at most p distinct eigen-
values pi , 1 < i < p. From the form (2.6) of (L + R) we see that its eigenvalues are
just the pi , each of whose multiplicity has a factor q [i.e. if p, has multiplicity r, in
(L, + R,) then it has multiplicity r,q in (L + R)]. If the p, are all distinct (or belong to
simple elementary divisors) it can be shown'from (7.0) that for some scalars a, ,

Bi+1 = a.TJ1 , l<j<q-l. (7.1)

*Only the boundary conditions may introduce singular B,- and 71, for elliptic difference equations.
However, these cases may be eliminated, depending on the boundary conditions, by either not including
the boundary values as unknowns (as in Sec. 8) or by requiring the difference analogue of the equations
to hold at boundary points.
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By changing the ordering (2.2), (2.5) from the original row-ordering to a column-
ordering (which is equivalent to a similarity transformation of L, R, B and T) we find,
as above, that the eigenvalues p,- of (B + T) are the eigenvalues" of p similar q X q
matrices. As eigenvalues of (B + T) each p,- has a multiplicity which is a multiple of
p and there are at most q such eigenvalues. It is well known that commuting matrices
have common eigenvectors. Thus in the above case there exist common eigenvectors
etj such that

(L + K)eu = pfiu , (B + T)eu = pfiu , (7.2)
for each pf and m, belonging to different elementary divisors of {L + R) and (B + T)
respectively.

To determine some properties of the p, and p, we consider the characteristic equations
of which they are the roots. Exactly as in the proof of the fundamental theorem we see
that

pi - (L, + R,) | = pi — xL: — i R:x

for arbitrary x ^ 0. Thus taking x = — 1 we find that if p is an eigenvalue of (L, + R,)
then so is —p. Furthermore if p is odd there is at least one zero eigenvalue and additional
zero eigenvalues must occur in pairs. Analogous results* are true of the eigenvalues
M of (B + T).

We are now in a position to apply Theorem III. We select first yA = (1, 0, 0, 0, 0)
and using (7.2) we may replace the pair (pt , nk) of the theorem by the pair (p,- , /j,) to
obtain from (5.5)

Xa,a = Pi + • (7.3A)
Similarly using yB = (1, 1, 1, 0, 0) we get

= TB— , (7.3B)
1 — Pi

and, finally, with yc = (1, 0, 0, 1, 1) Theorem III yields

XiilC = -r~z— (7.3C)1 Hj

We have introduced an obvious double subscript notation for the X. These are all of
the roots of the corresponding schemes since (7.3) holds for all p, and nf . Using other
schemes 7 in (5.5) would yield many other eigenvalues explicitly. However, any of the
class rA , F„ or Tc scheme eigenvalues are obtained by using (7.3) in (6.2) etc.

As a further condition let us assume that the p, and p.,■ are all real. (A sufficient
condition for this would be that (L + R) and (B + T) are symmetric. Then Bi+1 = 7',
and by (7.1) the T, and B, must be constants times the identity. Similar results would
hold for the transformed (L + R) block matrices.) Then by the parity of the eigenvalues
Pi and p.,- (i.e. since max, | p,- | = max,- p,) we obtain from (7.3A)

Xmax,j4 Pmax I Mmax • (7.4A)

*The properties of the eigenvectors (7.2) and the sign parity of the eigenvalues explains the ap-
parent ambiguity pointed out in Theorem III, in which any of four seemingly different equations could
have been used. They are not different but correspond to different labeling of the eigenvalues.
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Furthermore, if o < 1 and /imai < 1 we get from (7.3B, C):

. ^m,x ; (7.4B)
J- Pmax

Xm.x.c =   (7.4C)
Mmax

Thus we may easily compare these principal eigenvalues to obtain

Pmax ~f" Mranx ^ Amax _ a. ^ (Amax, B J t c) j

h) I Pmax 1/2 I ^ I Mmax 1/2 | => XmlIl B ^ ^m«*, C •

Since the mappings of the eigenvalues of the schemes in rA , rB and Tc from the cor-
responding image scheme eigenvalues are the same, the best scheme will be found in
that class for which Amai is smallest. The relations (7.5) may thus be used to determine
the best class. It should be noted, from (7.5a), that in the present case if the Richardson
method converges (Xmax A < 1) then the line-Richardson methods converge faster, and
if Richardson does not converge neither do the line-Richardson methods.

8. Laplace's equation. As an example we consider A2<t> = 0 in the rectangle
0 < x < 1, 0 < j/ < 1; with <£ = (given function) on the boundary. Using the mesh

Xt = iAx, Ax = - , 0 < i < p;
P " " (8-0)

y, = jAy, Ay = ^ , 0 < j < q;

and the difference approximations d2<j>/dx2 = 1/Aa;2 (</>i+1,,- — 2<pu + 0,_Ji)), etc., at
(Xi , yj), we obtain the difference equations

<t>ii = 9*[<l>i-l.i +0i + l,i] + 0y[4>i,i-1 + <fo,i+l]> J — — P ^ (g.J)
ll < i < q ~ 1

Here $<,.,• , > 4>x.a and are the given boundary values and

Ay2 Arr2
6' m 2(Ax2 + Ay2) ' 9y " 2(Ax2 + AyT) ' ^ + d" = (8"2>

Equations (8.1) may be written in the notation of Sec. 2 where Z,,- = ri{ = Q, , 6,, =
tij — 6y and the inhomogeneous terms come from the boundary values; the system is of
order [(p — l)(q — l)]2. The matrices (L + R) and (B + T) then commute and are
symmetric, and as proved in Sec. 7, their eigenvalues are the same as those of respectively,

0 1 0

1 0 •

• • 1

0 1 0

and d„

0 1 0

1 0 •

• • 1

0 1 0
(p - 1) X (p - 1) (q - 1) X (q - 1)
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The eigenvalues of these matrices are easily found to be

Pi = 26, cos (iir/p), 1 < i < p - 1; ^ ^

m = 2 6V cos (jir/q), 1 < j < q — 1.
The parity properties deduced in Sec. 7 are seen to be satisfied as p.- = — p„_i and
Hi — —• Thus the principal eigenvalues are obtained for i = j = 1, and we have

Pm&x = 26, cos 7r/p PH 26, - 6,(ir/p)2, ^ ^

= 26y cos ir/q K, 26v - 6„{ir/q)2,

where the approximate values hold for p » tt and q » ir.
Let us consider first iterative solutions of (8.1) by means of the canonical reference

schemes of Sec. 6 (all of which are simultaneous displacement methods). The principal
eigenvalues of these schemes are obtained, since Theorem III applies, by using (8.4)
in (7.3); then, as above, retaining only terms up to second order in 1 /p and 1/q we have

— ir\~f + ^i), [Richardson]\p q /

— ), [Horizontal line-Richardson] (8.5)
26, \p q /

— [Vertical line-Richardson],
"Vy \P Q. '

In this approximation we see that the direction of sweep, for minimum Xm,x of the above
line-methods, is determined only by the mesh ratio and does not depend upon the number
of mesh points in the x or y-directions (since both p and q were assumed large). If the
number of points is "small" the analogous criterion is obtained by using the exact
eigenvalues (8.4) in (7.5). The rates of convergence (Sec. 3) of the above schemes are
easily compared by recalling that —log (1 — «) th e for small e. If the mesh is square
6, = 6„ = 1/4 and the line methods converge twice as fast as the ordinary Richardson
(to second order in 1/p). If the mesh is rectangular then 6, < 1/4 or 0„ < 1/4 and by
sweeping in the proper direction further improvement is obtained (the implicit equations
should come from lines parallel to the direction of largest mesh spacing).

The successive displacement methods corresponding to the above reference schemes
may be taken as (see Table I)

7. -(1,1,0,1,0), 7» - (1,1,1, 1,0), 7c = (1, 1,0, 1, 1). (8.6)
The eigenvalues of these schemes are related to the corresponding reference eigenvalues
(since they are complete image schemes) by (6.3) with a = (i = 1. We note as in Sec. 6
that X = 0 may become an eigenvalue of the schemes (8.6) independently of the values
of X'. The remaining roots become X = (X')2, and corresponding to (8.5) we get, up to
second order in 1/p and 1 /q,

Xm«,. ~ 1 - 2tt2(^§ + h), [Liebmann]

Xm„,6 «l-^-R| -tN, [Horizontal line-Liebmann] (8.7)

Xm.r t«l - ~r\h + ^], [Vertical line-Liebmann],
6V \p q /
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Of course the rates of convergence are now rigorously twice those of the reference scheme
rates. The best sweep direction is determined as in the previous case, and again the best
line method converges at least twice as fast as the ordinary Liebmann (to second order
in 1/p and 1 /q).

The successive overrelaxation schemes which are usually applied to the above are

7a = (1/a, 1, 0, 1, 0), 76 = (1 /a, 1 /a, l/<x, 1, 0), yc = (1 /a, 1, 0, 1 /a, l/ot), (8.8)
and now (6.3) holds in each case with /3 = 1. As is well known [1] for ya above (which is
extrapolated Liebmann) and hence for all these cases, Xmax will be a minimum when a
is chosen as the smaller root of

XL*,*a2 - 4a + 4 = 0, (8.9A)
where X = A, B or C.
[That is, solve (6.3) for X and set the discriminant equal to zero when XA = Xrnl„, A .]
Then we have all | X | = Xmax where

Xma% = a - 1. (8.9B)
Using the reference eigenvalues (8.5) in the above we obtain for the schemes (8.8), up
to second order in 1/p and 1/q,

Xmax, a = 1 — 27!-^ + d-'iJ + 2ir2^-| + ^ij, [Extrapolated Liebmann]

X„., = 1 - (2/,)»4 + + ik + J),
\ 1 (o/a\v* le* A. e*X/2 _1_ * (e* _L d>\ [Extrapolated vertical
Xmax = 1 - (2/0J + -2) +yv[~* + -qi)- line-Liebmann].

There is an order of magnitude improvement in the rates of convergence of the extrap-
olated schemes over the previous schemes. That is, since (6x/p2 + #„/q ) = Ax2Ay2(Ax2 +
Ay2)~1, the present rates are O(Ax) or O(Ay) while from (8.5) and (8.7) the rates are
6(Ax2) or 6(Ay2). The line schemes now improve the convergence rate by a factor 21/2
for a square mesh or larger for rectangular meshes swept in the proper direction.
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