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MULTIPLE FOURIER ANALYSIS IN RECTIFIER PROBLEMS*
ROBERT L. STERNBERG, JEROME S. SHIPMAN, AND SHIRLEY ROSE ZOHN

Laboratory for Electronics, Inc., Boston, Massachusetts

Abstract. The non-linear problem of the multiple Fourier analysis of the output
from a cut-off power law rectifier responding to a several-frequency input is reviewed
for the one- and two-frequency problems and is briefly investigated for the three-frequency
problem. The solutions for the modulation product amplitudes or multiple Fourier
coefficients are obtained in exact although transcendental form. An account of the mathe-
matical properties of these multiple Fourier coefficients or Bennett functions, including
hypergeometric representations and power series expansions for them as well as recur-
rence relations satisfied by them, is given in the paper together with line graphs of the
first ten basic functions for the one-frequency problem and of the first fifteen basic
functions for the two-frequency problem. Further applications of the theory are also
given to the computation of average output power with the aid of the multiple Fourier
coefficients or Bennett functions studied in the paper, and the work is concluded with
some brief remarks concerning the interpretation of the results in terms of the theory
of almost periodic functions and the generalized Fourier series of Bohr under appropriate
conditions. Numerical tables of the functions graphed have been prepared and are
available separately in the United States and Great Britain for applications requiring
great accuracy. Finally, the entire theory is based on the original method of the expansion
of the rectifier output in multiple Fourier series introduced by Bennett in 1933 and 1947.

1. Introduction. A non-linear problem of continuing interest in theoretical elec-
tronics, and one much studied in the one- and two-frequency instances, is the multiple
Fourier analysis of the output from a cut-off power law rectifier responding to a several-
frequency input under various assumptions about the cut-off bias, about the exponent
of the power law, and about the input amplitude ratios. Among others Bennett [1, 2],
Kaufman [3, 4], Lampard [5], Salzberg [6], and Sternberg, Kaufman, Shipman, and
Thurston [7, 8, 9, 10, 11] have obtained exact although transcendental solutions for the
modulation product amplitudes or multiple Fourier coefficients in the first two cases
mentioned and have tabulated some of these quantities under the name of Bennett
functions, while Feuerstein [12], following a method of Bennett [1] and Rice [13], has
recently given a quite extensive treatment of the n-frequency problem in terms of gen-
eralized Weber-Schafheitlin integrals [14] suitable for numerical evaluation.

In this paper, after reviewing some of the more interesting results noted above for
the one- and two-frequency problems associated with a cut-off power law rectifier,
with one or two new results added, we briefly investigate the three-frequency problem
by a transcendental method of extension of previous results using, particularly, certain
integral recurrence relations which hold between the multiple Fourier coefficients or
Bennett functions of different multiplicities. Since the frequencies and phase angles are
readily found, the real problem with which we are concerned in each instance consists
of evaluating the single, double, or triple integrals defining the Fourier coefficients in
the multiple Fourier series expansion of the output from the rectifier. The mathematical
properties of these multiple Fourier coefficients or Bennett functions are investigated
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systematically, and hypergeometric representations and power series expansions for
them and recurrence relations satisfied by them are given in the paper, together with
line graphs of the first ten basic functions for the one-frequency problem and of the first
fifteen basic functions for the two-frequency problem. In addition to providing for the
multiple Fourier series expansion of the output from the rectifier, it is shown that the
average output power may also be computed in terms of the same multiple Fourier
coefficients or Bennett functions as those studied, provided, in the two- and three-
frequency cases, that the input is non-periodic. No attempt is made to discuss modulation
product problems more general than those associated with rectifiers, the reader in such
instances being referred to Sternberg and Kaufman [7, 8, 9] for a general approximation
process applicable to any continuous modulator, the solution again being formulated
in terms of Bennett functions as here. The paper is concluded with some brief remarks
concerning the interpretation of the results in terms of the theory of almost periodic
functions and the generalized Fourier series of Bohr, again under the proviso, in the
two- and three-frequency cases, that the input be non-periodic. Numerical tables giving
values of the functions graphed good to 1 X 1(T6 units at values of the arguments
spaced one-tenth of a unit apart have been prepared and are available separately from
the sources noted below in the United States and Great Britain for applications requiring
great accuracy. Finally, we may note in passing that the entire theory is based on the
original method of the expansion of the rectifier output in multiple Fourier series intro-
duced by Bennett [1, 2] in 1933 and 1947.

The general rectifier problem is formulated precisely and the solution in simple or
multiple Fourier series is outlined in Sec. 2. The review of results for the one- and two-
frequency problems is presented in Sees. 3 and 4 while the three-frequency problem is
treated in Sec. 5. The results of the theory which apply to the computation of average
output power for a single frequency periodic input or a multiple frequency non-periodic
input are given in Sec. 6, and the concluding remarks bearing on the connections with
the theory of almost periodic functions and the generalized Fourier series of Bohr are
given in Sec. 7. Copies of the numerical tables of the Bennett functions graphed in the
paper and available to the public have been deposited with Mr. D. H. Lehmer of the
Unpublished Mathematical Tables File in the United States and with Mr. Andrew
Young of the Grace Library of the University of Liverpool in Great Britain and with
the authors.

2. Formulation of the problem. Consider a cut-off power law rectifier having an
output versus input characteristic Y = Y"(X; X0) of the form

r(X; X0) = f(x ~ X°y' x > x° ' „ > 0. (2.1)
Lo, X < x0,

Let the input to the rectifier be a one-, two-, or three-frequency function of time,
x(t), of one of the forms

x(t) = P cos (pt + 6P), P > 0, (2.2)

x(t) = P cos (pt + ep) -(- Q cos (qt + B,), P > Q > 0, (2.3)
or

x(t) = P cos (pt + 9,) + Q cos (qt + 0„) + /? cos (rt + 8r), P > Q > R > 0. (2.4)
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The output from the rectifier, y(t) = Y"[x(t); X0] has then a single, double, or triple
Fourier series expansion of the corresponding form

y(t) = hP'A(„'\h) +P' Z A?{h) cos (umt + 4>m), (2.5)
TO— 1

y{t) = \P'An'a\h, k) + P' ±* Al'Uh, k) cos (w.mJ + (2.6)
to , n-0

or
CO

y(t) = §P'Aooo(h, kt , k2) + P' AL'imnl(h, kt , k2) cos + </>+.„„,), (2.7)
m.n.I-0

where h = X0/P, k = Q/P > 0, and = Q/P > k2 = R/P > 0, and where the modu-
lation product angular frequencies, phase angles, and amplitudes are given by the
formulas

oim = mp, <t>„ = mdv , (2.8)

= mp dh ng, = m0„ ± nda , (2.9)

w—„„i = mp ± nq ± Zr, = m0v ± ndq ± I6r , (2.10)

and the formulas

Am\h) = - f (cosu — h)' cos mu du,
7T J(R4

(Ri : cos u > h, 0 < u < 7r,

Al'in(h, k) = \ J"J (cos u + fc cos v — h)' cos mu du cos nv dv.
m,

(2.11)

(2.12)
(R2 : cos m + k cos v > h, 0 < u, v < it,

Al'l„ni(h, ki , k2) = Jj"J (cos u + fc, cos v + k2 cos u> — h)'
<H, (2.13)

• cos mu du cos nv dv cos Iw dw,

<R3 : cos u + cos v + k2 cos w > h, 0 < u, v, w < ir,

where in all of these formulas the indices m, n, I take all integral values m, n, I > 0
and, finally, where the asterisks on the summation signs in (2.6) and (2.7) indicate that
in these multiple Fourier series we sum only on all distinct arrangements of plus and
minus signs, equivalent arrangements being taken only with the plus signs and with
the zero order terms, particularly, having been removed from the sums.

We will assume the genesis of these Fourier expansions to be well-known and will
refer the reader to Bennett [1] or Sternberg and Kaufman [7] for additional details of
such matters. It may be worth noting, however, that the existence of these Fourier
series follows at once from the continuity of the kernel functions in the integrands of
the quantities A^\h), Ai'ln(h, k), and Al"imnl(h, fc, , k2) within the corresponding regions
(Rt, (R2, and (R3 while the convergence of these Fourier series to the functions y(t) follows
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at least at all points of continuity of the y{t), in the case of (2.5) from the elementary
theory, in case of (2.6) from the theory of the double Fourier series given by Hobson [15]
or Tonelli [16] and, finally, in the case of (2.7) may presumably be surmised from Hobson's
remarks concerning comparative properties of the double and multiple Fourier series in
general.

As noted in the introduction the whole problem of multiple harmonic analysis with
which we are concerned for rectifiers consists of the evaluation of the multiple Fourier
coefficients or the integrals A'^Qi), AL'ln(h, k), and Al'imnl(h, ki , k2) in (2.11), (2.12),
and (2.13) as functions of their several parameters. Aside from certain relatively simple
closed form solutions obtainable in the one-frequency problem none of these integrals
can be evaluated in closed form in terms of elementary functions, except for specialized
values of the parameters h, k, fc, , and k2 , but rather in general the best that can be
obtained are solutions in a transcendental form of one type or another with the final
computations to be done by numerical methods. Although one might wish for more
simple results in the two- and three-frequency problems, the power of the methods to
be presented should not be underestimated for either theoretical or practical purposes.
Finally, in recognition of the original work of Bennett [1, 2] and following previous
usage, we term the functions A^ih), Ak), and A*lmnl(h, ki , k2) Bennett functions
of the rth kind and of multiplicities one, two, and three respectively.

3. Review of results for the one-frequency problem. In the one-frequency problem
for the rectifier (2.1) we have for the input the signal (2.2) and for the output the Fourier
series (2.5) and have to determine particularly the Fourier coefficients

2 rA^\h) = - (cos u — h)' cos mu du,
T J<Ri (3.1)

CRi : cos u > h, 0 < u < r,

as functions of h = X0/P for fixed v > 0. The variable h takes all real values and, following
Kaufman [3], we note three cases of the functions A^'(h) according to the scheme:
(0) h > 1, (a) | h | < 1, and (°°) h < — 1. Clearly case (0) may be disposed of at once for
in this case the rectifier is biased so strongly that we have A^ty) = 0 for all m.

Consider now cases (a) and (°°) for all v > 0. To begin with, the functions A'^^h)
satisfy a number of recurrence relations. Thus, for determining the (v + l)th kind
functions in terms of those of the pth kind we have the recurrence formulas

1 X(' + D = lyj(') _ lhAi')2-Zlo — 2-^M 2"'-*10 )

2m^l'+u = (v + 1 )Al'i, - (v + 1)A<"
(3.2)

m + 1 j

while for purposes of evaluating the (m -)- l)th order functions in terms of those of the
mth and lower orders we have the recurrence formula

(m + v+ \)A':U ^ 2mhA^ - (m - v - 1)A^l, , (3.3)

where in each of these relations m > 1. For proofs we refer to Kaufman [3]. For actual
evaluation of the functions A^\h) two general solutions are available. In particular,
in case (a) Bennett [2] has given the formula

Al'\h) = (!)'/2 (1 - />r,/2F[* + m, i - to; V + I; 4(1 - K)], (3.4)
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while in case (<») Lampard [5] has given the result

Al"\h) = 1 h r" F[h{m + + 1; (3-5)

where in each of these formulas F(a, 6; c; x) denotes the Gaussian hypergeometric function
and where m > 0. Various alternative forms of these solutions have also been noted by
the same authors, Bennett, in particular, indicating certain special results for integral
and half integral values of v; see also Salzberg [6].

Consider next cases (a) and (<») for integral values of v. In view of the recurrence
relations (3.2) for determining the functions A^+1)(h) in terms of the functions A^'(h),
it is clear that for such values of v the solutions may be completely expressed in terms of
those for a basic set such as A^Qi) or Am(h) = A™(h). Actually we choose the latter
as being more important in their own right. In case (a) following Bennett [2] we may
simplify (3.4) or integrate directly with Salzberg [6] to obtain the special results

$A0(h) = — [(1 — h*)w* - h cos"1 h),
T

A,(h) = - [cos-1 h- h(l - ft1)"*], (3.6)
7T

.  1_ /sin [(m — 1) cos~' h] _ sin [(m -f- 1) cos~' h]\
m-r \ m — 1 m + 1 /'

where m > 2, while in case (®) we have

U.ih) = | h |, At(h) = 1, Am(h) = 0, (3.7)
where again m > 2. These formulas represent an essentially complete solution for the
functions Am(h) — A^^h). For many purposes, however, the corresponding power
series expansions are more illuminating. Expanding the elementary functions in (3.6)
and combining terms we have, for example, in case (a) for the first few functions Am(h) —
A^'(h) the series

(3.8)iA,W - i[l - fft + i*' + i*' + +...],

A'(»-;[l-2h + lk' + kh* + kh' + -] (3-9)
AM = i [| - h* + | hA + ^ h° + • • • ], (3.10)

Mh) = t [I " h' + i h* + k h° + "']' (3-11)

Mk) = l[-h + k2-lhi + khe + •••]' (3-12)

Mh) = £ [-| + | h2 - I h* + | h" + • • •], (3.13)

each of which converges uniformly for | h | < 1 and, indeed quite rapidly, the terms
given above, for example, being sufficient to evaluate the functions iA0(h) to A^h) to
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better than 1 X 10~3 units for | h | < 5. Finally, in addition to the above formulas and
series for the functions Am(h) = A^\h) in cases (a) and (<*>) Kaufman [3] has given
the reflection relations

Uo(-h) m lA0(h) + h, Ai(-h) « 1 - A^h), Am(—h) = (-1)mAm(h), (3.14)
for determining the functions of negative bias in terms of those of positive bias where
again m > 2.

For elementary applications and general interest line graphs of the first ten functions
ji0(A) = 5-4"'W and Am(h) — A£'(h) are presented in Fig. 1 while for applications
of greater accuracy the reader may refer to the tables of these functions mentioned in
the introduction.

0.6

0.5

^•A0(h) and Am(h)

-0.1
02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

h
Fig. 1. The functions J A^h) and Am(h, k)

4. Review of results for the two-frequency problem. In the two-frequency problem
for the rectifier (2.1) we have for the input the signal (2.3) and for the output the double
Fourier series (2.6) and have to determine particularly the Fourier coefficients

Al'i„{h, k) = -2 [[ (cos u + ic cos v — h)' cos mu dv cos nv dv,v i, (4.1)

(R2 : cos u + k cos v > h, 0 < u, v < t,

as functions of h = X0/P and k = Q/P for fixed v > 0. The variable h takes all real
values while the variable k ranges over the interval 0 < k < 1 and, as before, we note
three cases of the functions Al'^Jh, k) according as: (0) h > 1 + A~, (a) | h \ < 1 + k,



1959] MULTIPLE FOURIER ANALYSIS IN RECTIFIER PROBLEMS 341

or (oo) h < — 1 — 7c. Clearly again case (0) may be disposed of at once, the rectifier
being biased so strongly that we have A L*„n(h, k) = 0 for all m, n while in all cases the
functions A^n(h, 7c) are independent of the double sign so that we may drop it hereafter
and write simply A^n{h, 7c).

Consider now cases (a) and («>) for all v > 0. As before the functions Al^'n(h, k)
satisfy a number of recurrence relations. Thus, first of all comparing the definitions
(3.1) and (4.1) of the functions A'^}(h) and A 'Zl(h, k) one readily observes the funda-
mental formulas

A k) as - f A'm"(h — k cos v) cos nvdv,
TT Jo

A{^n(h, k) = — f Al'\h' — k' cos u) cos mu du,
7T J o

(4.2)

where h' = h/k and 7c' = l/7c, which express the A^„(h, k) in terms of the A^^h) and,
hence, in a sense constitute a complete solution of the two-frequency problem in terms
of the solutions of the one-frequency problem. Next, for determining the (c -f- l)th
kind of functions in terms of those of the ?th kind we have much as before the recurrence
formulas
fa) 14 <•■ + >) = _L — ±h A (,>\<*>) 2-^00 — 2/110 I 2"*** 01 2'l-™00 >

(b) 2mA 1"„+1) . (v + 1 )AL'l,.n ~ (v + 1)4™,.. , (4.3)
(c) 2nAi::i) * {v + i)kA(:^ - <? + dkA(::n+1,
where in (b) m > 1, n > 0, and in (c) m > 0, n > 1, while for purposes of evaluating
the (to + n 4- l)th order functions in terms of those of the (to + w)th and lower orders
we have the recurrence formulas

(a) (to + n + v + l)i4i'», = 2 mhA ̂
— 2mkA„\-1 — (to — n — v — ,

(b) (to - n + , + 3)A a 2(to + 1)7)71 <"m + I ,n—1

^ I ™ 1\ A

(4.4)
— 2(to + l)fc.4m'+,,n — (to + n — v — 1).4,

(c) (n + m + v+ DAi'i., ^ 2nh'A(:l
— 2nk'A^lUn — (n — m — v — IJAI'.'b-i >

(d) in — to + v + 3)Al'2,,n+2 = 2 (n + l)hf A'J!-i ,n+i
- 2(n + \)k'A^]n+x - (n + to — v — 1 )AL_,,„ ,

where h' = h/k and k' = 1 /k and where in (a) and (c) m > 1, n > 1, in (b) to > 0,
n > 1, and in (d) to > 1, n > 0. The proofs of these relations, though computationally
lengthy, are entirely elementary and may be effected by combined use of the recurrence
relations (3.2) and (3.3) for the functions A'^'{h) and the formulas (4.2) for expressing
the functions A7c) in terms of the functions A^'(h); see also Kaufman [4]. For
actual evaluation of the functions A'^n(h, k) only one general solution seems to be avail-
able. Thus, in case (<») Lampard [5] has given the formula

A<W)(h k) ~ — r(y + 1)  , , ,,-m-n ,nA mn{h, k) - mM r(j> _ m _ n + j) | h | ft (4 5)

+ n — v), %(m + n - v + 1); to + 1, n + 1; 7T2, k2h~2],



342 R. L. STERNBERG, J. S. SHIPMAN, AND 8 R. ZOHN [Vol. XVI, No. 4

where b; c, d; x, y) denotes Appell's fourth type of hypergeometric function of
two variables [17] and where m > 0, n > 0. Other forms of this solution have also been
noted by the same writer.

Consider next cases (a) and (<») for integral values of v. Similarly as before the
recurrence relations (4.3) for determining the functions A (m'„+1} (h, k) in terms of the
functions A(^n(h, k) make it clear that for such values of v the solutions may be com-
pletely expressed in terms of those for a basic set such as A(°l(h, k) or A„n(h, k) =
A 'Ll(.h, k) and again we make the latter choice. Even for these functions it is not possible
to give a complete solution free from integral signs or numerical procedures in case (a).
However, in the subcase of case (a) in which | h \ -f k < 1, using a method amounting
to substitution of the series (3.8) to (3.11) and so on for the functions Am(h) — A^ih)
into the formulas (4.2) for the functions A^'n(h, 7c), Sternberg and Kaufman [7] have
derived double power series expansions of the forms

1 + \h*+ kh*+ §o h°+ "

\ Auu(h, k) = -J h + i ^
L & IT

Aio(h, k) = ± + --|
Z 7T

fc2 + | fcV + | +

+kk'+ xkh'k' +
+ 256 k + '''

~2 + lh' + hh* + hh"+

+l*4+sfcV + -

(4.6)

A0l(h, k) = \ ^ ^
A T

+128 +

1 ^ I' 3,4 5 ,8
6 40 112

_i lr2 - _8 * 16 h * 64

3 .4 25 ,2.4~Mk ~ 128 " •••

(4.7)

25
1024 k -

(4.8)



•^•20 (Jlj It) ~~ '
ir

Au(h, k) = -
7T

1024 /c

i4o,(A, Jb) = -
7T

4i + §/t2 + |,i4 + l"fi+--

+^ + JL^+»fcV+.

+5T2fc4 + li4,l2/c4+---

2048 A:" +

fc) = -

- - ',2 + - ^ ^ ^ ■

-| /c2 + | fc2/c2 + y~ ft4*2 +

+31/c4+i^4 +

+384 /C" +

(4.9)
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l-V + \h' + kh°+---
lc2 + | /A2 + ^ ft4*2 + • •

+l/c4 + i/,2fc4 + •••

+384 /c + " '

-kk,-jkh'ki-
5

(4.10)

(4.11)

(4.12)
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1 -1- ift" - ^5-

Au(h, k) = -
7T ^ L* 35 ,2,4~Qik ~ 128 " •

k" -1024

Ait(h, k) = —
7T

i + I h° + I+ + *"
+^a + i^ + S^ +

+lfc4+s,i2fc4 + --

+Ji8fc8+-

(4.13)

(4.14)

8 2.0

Fig. 2. The function J .4<*>(/», k)
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0.7

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
h

Fig. 3. The function k)

_1 — h2 — h* — ^ b6 —
24 16 64 384

3 ,2 _ 25 , 27,2 _ 245 ,4,2"128 256 1024
a a, n _ ,lk3-^03\hj k) —

7T 15 r - ^ fcV -1024 12288

Jfc" -245 ? A

, (4-15)

24576

and so forth, each of which converges uniformly for | h | -f k < 1 and, in fact, quite
rapidly, the terms given above, for example, being sufficient to evaluate the functions

k) to AQ3(h, k) to better than 1 X 10~3 units for | h \ + k < In case (<»)
as before we have

?A00(h, k) = | h |, A10(h, k) = 1, ^ x

A01(h, k) = k, AmnQi, k) = 0,
where m + n > 2. For half-integral values of v in the sub-case of case (a) in which
| h | + k < 1 similar double power series expansions for the functions A^n(h, k) also
may be obtained by combined application of the formulas (3.4) for the functions A^\h)
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and (4.2) for the functions A^n(h, k), the half-integral property of v making possible
the explicit computation of the coefficients in the series, while in case (<») the formula
(4.5) for the functions A(^n(h, ft) also applies with some slight simplifications of the
gamma functions. Finally, in addition to the above formulas and series for the functions
Amn(h, k) = A{„n(h, ft) in cases (a) and (<») Bennett [2] and Sternberg and Kaufman [7]
have given the reflection relations

2-^oo( hj k) — ̂ Aooihj ft) -{- h, -Aio( h, ft) = 1 An)(h, ft), ^ \T)
A0i(—h, ft) - ft - A01(h, ft), Amn(-h, ft) = (-1 )m+"Am„(h, ft),

for determining the functions of negative bias in terms of those of positive bias where
again m -f- n > 2. These formulas also may be derived in an elementary manner with
the aid of previous results for the functions Am(h) = -Al"(/i) and the formulas (4.2)
for the functions A ft).

For elementary applications and general usefulness line graphs of the first fifteen
functions %A00(h, ft) = ^A(0l\h, ft) and Amn(h, ft) = A ft) are presented in Figs.
2 to 16 while for applications requiring greater accuracy the reader as before may refer
to the tables of these functions described in the introduction.

5. Some new results for the three-frequency problem. In the three-frequency
problem for the rectifier (2.1) we have for the input the signal (2.4) and for the output
the triple Fourier series (2.7) and have now to determine the Fourier coefficients

AL"lm„,(h, fti , fc2) = JJJ (cos u + ft, cos v + ft2 cos w — h)'
(5.1)

• cos mu du cos nv dv cos Iw dw,

(R3 : cos u + ft, cos v + ft2 cos w > h, 0 < u, v, w < tt,

as functions of h = X0/P, ft, = Q/P, and fc2 = R/P for fixed v > 0. The variable h
again takes all real values while the variables ft, and fc2 range over the intervals 0 < fc2 <
ft! < 1 and, as before, there are three cases of the functions Al"lmnl(h, kl, fe2) according as:
(0) h > 1 + fti + ft2 , (a) | h | < 1 + ft, + ft2 , or (®) h < — 1 — ft! — ft2 . Similarly
as before in case (0) we have Al'lmnl(h, , ft2) = 0 for all m, n, I while in all cases the
functions Al'lm„,(h, ftj , k2) are independent of the double signs so that we may write
simply A^\(h, ft, , fc2).

Consider now cases (a) and (°o) for all v > 0. As before the functions A^'„\(h, ft, , fc2)
satisfy a number of recurrence relations. Thus, to begin with comparing the definitions
(4.1) and (5.1) of the functions A^„(h, ft) and A^\(h, kL , fc2), one readily observes in a
manner similar to that previously used the fundamental formulas

A£(h, fti , ft2) = - f A '^l(h - ft2 cos w, ftO cos Iw dw,
TT Jo

A^,\(h, ki , ft2) = - f A^\{h - ft, cosy, k2) cos nv dv, (5.2)
TT J 0

A^'n](h, fti , ft2) = — f AlWK — K cos u, k[k2) cos mu du,
TT J o
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where h[ = h/kl and k[ = l//c,, which express the A^"n\(h, , fc2) in terms of the A^n(h, k)
and, hence, in a sense constitute a complete solution of the three-frequency problem in
terms of the solutions of the two-frequency problem. Next, for determining the higher
kind and higher order functions in terms of those of the rth kind and (to + re + l)th
order we have respectively the recurrence formulas

(a) + iMoli + hhAoll - hhA(0H ,
(b) 2toa:;v) - (v +1)-(? +1)A(:i1,n,l, (53)
(c) 2nA(:;,l) m (r + UJMiV-i.. - (" + DMiV-i.. ,
(d) 2ki£J1> m (y + DMS?...-. - (r + ,
where in (b) to > 1, n > 0,1 > 0, in (c) to > 0, n > 1,1 > 0, and in (d) m > 0, re > 0,
I > 1, and the recurrence formulas

(a) (to + re + I + v + 1) -A i, i = 2mhA^i
2mklAm,n-i,l 2mk2Am,n,i-i

-(to — re - I — v — l)Ai'2,.n.i ,
(b) (to — re + I -f- v + 3)4i"i2.n-i,i = 2(to + l)A4»+i,«-i,i

— 2(to + 1 )klA(J!lUn,l — 2(to 4- l)Mi+i.-i.i-i
— (to + re - I - v — l)Ai'.Uif. .

(c) (to + n — Z + >< + 3)Al'i2,n,i_i = 2(to -)- l)A4l'+i
- 2(to + DMIh.,., - 2(m + lJlML'-i,.n-i,,-.

— (m — n + l- v— >

(d) (to - re - I + v + 5)4itS,„-i,M = 2(m + 2)hA^l2,
(*> I 0\ 7/. AW- 2(m + 2)k2AL'i2.n-i.i ~ 2(m + 2)Mi+..n.i-i

L^x   ,— (to+71 + Z — f —
and

(a) (n+ I+ m + v+ DAJL'.U,., = 2nAI'A^|
- 2nk[k2A':l,l-l - 2nfc{Ai-....i

— (n — I — m — v — 1)^1''--l.i ,

(b) (re — Z 4- m + v + 3)A^\+2,i-i = 2(re 4- l)A{Ai,',)i»+i,i-i
- 2(n + lWfc.Ai'.U... - 2(n +

— (n + I — m — 1/ — ,

(c) (re + I — to + v + 3)Ai'21,B+2,i = 2(re + l)/i(4l'21,B+Iii

- 2(» + - 2(n +
— (n — I + m — V — 1) A m—l ,n. I >

(d) (re - I - TO + * + = 2(71 + 2)h[Al'l1,n+2.i-i
- 2(n + 2)^4^2..-! - 2(re + 2)«M~».-».i

— (re-f-Z + rei — p — l)4«li,u+i.i-i ,

(5.4)

(5.5)
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and

(a) (Z + m + n 4* v + — 2Z/i^4li)n,i

- 22fcU£i.... - 2
— (I— m — n — v — 1)^41',,

(b) (2 — m n v 3= 2(2 -f-
- 2(2 + ~ 2(1 +

— (Z + m — n — v — 1)41-,.,., , ^ ^

(c) (Z + tW — W + V + 3)^4m,'n-l,l + 2 = 2(Z + l)%2-^iL,a-ltl + l

- 2(1 + l)kMA!;?n.l+i - 2(1 +
— (l-m+n-v — .

(d) (Z - m - n + v + = 2(2 + 2)«;1<2,
- 2(2 + - 2(2 + 2)fcUl'.n-..«+2

— (Z + m + n — v — l)4i'2liB_ii(+, ,

where = /i//cx , /ij = h/k2, k[ = 1 /&, , and k'2 = 1 /k2 and where in formulas (5.4)-(a),
(5.5)-(a), and (5.6)-(a) m > 1, n > I, I > 1; in formulas (5.4)-(b) and (c) m > 0,
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n > 1, I > 1; in formulas (5.5)-(b) and (c) m > 1, n > 0, I > 1; in formulas (5.6)-(b)
and (c) m > 1, n > 1, I > 0 while in formulas (5.4)-(d), (5.5)-(d), and (5.6)-(d) we
have respectively m > — 1, n > 1, I > 1; m > 1, n > — 1, I > 1; and m > 1, n > 1,
I > —1. As before the proof of these relations, though computationally lengthy, is
entirely elementary and may be carried out by combined application of the recurrence
relations (4.3) and (4.4) for the functions A (^n(h, k) and the formulas (5.2) for expressing
the functions A^\(h, kl , k2) in terms of the functions Ak). For actual evaluation of
the functions A^\(h, kx , k2) no general solutions free from integral signs or numerical
procedures appear to be known, the formulas (5.2), the Sternberg and Kaufman approxi-
mation process [7, 8, 9] and Feuerstein's generalized Weber-Schafheitlin integral repre-
sentations [12] being the most general and useful points of departure for numerical work.

Consider next cases (a) and (°°) for integral values of v and for similar reasons as
previously, consider particularly, the basic set of functions Am„i(h, ky , k2) =
A£\(h, ki , fc2). Clearly again it is not possible even here to give a complete solution free
from integral signs or numerical procedures in case (a). However, in the subcase of case
(a) in which | h | + kx + k2 < 1, using methods similar to those used before of substitution
of the series (4.6) to (4.11) and so on for the functions Amn(h, k) = A(„„(h, k) into the
formulas (5.2) for the functions A^'n\(h, , k2), we may again obtain a solution in multiple
power series; in particular, for the case of half-wave rectification in which the bias
h = 0 we have double power series expansions of the forms

1 + i kl + kkl + de k° + " ■

+i k* + 16 k*k* + ^6 k*k* + ''

+hk° +^6kX +' •'
o ^ooo(0, ki , k2) —

256+ OC7? ^2 +

(5.7)

-4ioo(0, ki , k2) — 2 > -4oio(0, ki , k2) — ̂  ki , ^ooi(0, fci , k2) — ̂ k2 , (5.8)

2 1,2 ■ 3,1. 5 ,6.
3 2 32 384 1 "

kl + | k\k\ + ~ k*X + ■ ■

+k k* + ~m kX + "'

+4ikl +

^4too(0, k\ j k2) —
7T

(5.9)
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1 _ I 1.2 L U* _  1.8 _ . .1 8 64 1024*'

^ I.2 ^ 7.27 2 15 j 4, j

4 32 256 12 ''
A1IO(0, , ^2) —

7r — — fr4 — fr2fr4 —
64 2 512 12

fce -
256 *2

^ioi(0, fci , ^2) —
7T

I 1.2 _ 3_ ,4 5_ ,B _
4 1 64 1 256 1

- b2 — — 1-21.2 _ _45_ ,4, 28 *2 32 fcl/Ca 512

I.4   JJL I.2!.464 *2 256 ftlfca

1024fcS -

4020(0, h , k2) = 
7̂T

1024 2 +

fclfc2
^0,l(0, fcl , A^) —

7T

i _L J_ 1.2 1 _3_ ,1 1 5_ ,8 1
4 48 512 1 + 2048 1 +

+256 k2 + 1024 ̂  + " '

2 + 16 kl + 128 kl + 2048 kl + '

+iis*2 + lis*^2 +' •'

+Ji8fc2 + ---

(5.10)

(5.11)

(5.12)

(5.13)
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— + — fc2 4- ^ k* 4- ^ fcfi 4- • •
4 + 16 1 + 256 1 + 1024 1 +

^oo2(0, fci , fcs) = -
7T

fc2 -1- — fc2fc2 4- 75 frV48 *2 + 64 ^ + 1024 ftlfc2

+512 k* + 2548 +

5 ?.«
2048 fc* +

(5.14)

and so forth, each of which converges uniformly for + fc2 < 1, the k, and k2 being
positive and, in fact as before, the convergence is quite rapid, the terms given above,
for example, being sufficient to evaluate the functions ^40oo(0, fci , fc2) to 4o02(0, fc, , fc2)
to better than 1 X 10~3 units for k, k2 < J. In case (<») as before we have

jAooo(hi ki , fc2) = | h |, AiooQi, , fc2) = 1, .<4oio(7i, hi > k^) = ki ,
j4ooi(/i> ki , fc2) = fc2 j Amnl(h, kt , fc2) = 0,

where m + n + I > 2. As before for half-integral values of v in the sub-case of case (a)
in which | h j 4- fci 4- k2 < 1 comparable double or triple power series expansions for
the functions 4^',(0, fci , fc2) or A^\(h, fc, , k2) also may be obtained by combined use
of the formulas (3.4) for the functions A^'(h), formulas (4.2) for the functions A (^Jh, k),
and formulas (5.2) for the functions A^"n\(h, fc, , /c2), the half integral character of v
again making possible the explicit computation of the coefficients in the series but in
case (a>) no special results exist. Finally, in addition to the above formulas and series
for the functions Amni(h, fc, , fc2) = A^hQi, fc, , fc2) in cases (a) and (°o) wc may note
the reflection relations

2^-ooo( k\ , fc2) = ^j4ooo(^> fci , fc2) 4-

^4ioo( fci , fc2) = 1 Al00(h, fc, , fc2),

•^oio( hj ki , fc2) = fc, A0l0(h, k\ , fc2), (5.16)

"4ooi( h, ki , fc2) = fc2 ^ooiCi, ki , fc2),

•4mBi( h, ki , fc2) s ( 1) Amni(h, ki , fc2),

for determining the functions of negative bias in terms of those of positive bias where
again m + n + I > 2. These formulas likewise may be established in an elementary
manner by the use of previous results for the functions Amn(h, k) = A^Qi, k) and the
formulas (5.2) for the functions A^\(h, kl , k2).

6. Applications of the theory to the computation of power. The theory of the
preceding sections concerning the functions A^'(h), Afc), and A^'„\(h, fc, , fc2) and
the graphs of the functions A„(h) = A^Qi) and Amn(h, fc) = A^JJh, fc) given in this
paper not only may be applied to the computation of modulation product amplitudes
but also to the computation of the average output power of the rectifier (2.1) when
responding to a several-frequency input of the form (2.2), (2.3), or (2.4), provided, in
the two- and three-frequency problems, that the input is non-periodic. Thus, applying
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the Parseval theorem [15, 16] or Bessel equality for simple or multiple Fourier series
and assuming for the moment that the average output power (P0 in each case may be
taken to be one-half of the sum of the squares of the corresponding Fourier coefficients,
we have in the one-, two-, and three-frequency problems respectively the formulas

(Po = jP^A^Qi) + \p2' i; A^\h) = i P2'A?'\h), (6.1)

(P0 = j P2'A£\h, k)+l P2' X> Al'lXh, k) = I P2"Aal"\h, k), (6.2)
^ & m.n-0 *

and

(Po = \ P2'All\\h, k, , kt)
(6.3)

+ \P2> £* Al'ilUh, k> , k2) = \p2'A&'o\h, k, , k2),
" m,n, I-0 &

provided, for the validity of (6.2), that the input frequency ratio p/q in (2.3) is irrational
and, for the validity of (6.3), that the input frequency ratios p/q, q/r, and r/p in (2.4)
are all irrational or, in short, that the inputs in question are non-periodic. The proofs of
these formulas follow at once from the theorems cited while the justification of the
assumptions made concerning the definition of average output power will be given in
the last section below. We note in passing that by considering separately the leading
terms and the summations in the left hand members of (6.1), (6.2), and (6.3) we may
separate out the alternating and direct current output power from the average output
power without difficulty. Finally, it may be remarked that by applying the Sternberg
and Kaufman approximation process [7, 8, 9] to the squared characteristics of more
general continuous modulators than rectifiers, output power computations for these
more general problems may also be carried out in terms of the same Bennett functions
as here.

7. Some concluding remarks. In concluding this paper on multiple harmonic
analysis in rectifier problems it seems worthwhile to note that the simple and multiple
Fourier series expansions of the rectifier output (2.5), (2.6), and (2.7) are also generalized
Fourier series in the sense of Bohr [18, 19, 20] provided, in the two- and three-frequency
problems, that the inputs are non-periodic and that v > 0. The significance of this remark
and also its justification lies in the fact that under the conditions noted we have for the
functions A^Qi), A(^„(h, k), and A^'n\(jh, fc, , fc2) the further formulas

A{;\h) = 2 lim ± [T y[cos (pi + ev); h] cos (o>J + <*>,„) dt, (7.1)
T-*oo J- Jo

Al"L(h, k) = 2 lim ^ ^ y'[cos (pt + 0„) ^ ^

+ k cos (qt + 0,); /i] cos (u+ <£.„„) dt,
and

Al"lmnl(h, ki , k2) = 2 lim j, y[cos (pt + 6V) ^ ^

-f- ki cos (qt -\- 6a) k2 cos (rt + 8r)~, h] cos (a>„»m„it + =*= mnl ) dt,



1959] MULTIPLE FOURIER ANALYSIS IN RECTIFIER PROBLEMS 359

where for the validity of (7.2) and (7.3) we thus assume that the frequency ratio p/q
in (7.2) and the frequency ratios p/q, q/r, and r/p in (7.3) are all irrational and that
v > 0. To establish these formulas we begin by noting with the aid of Hobson [15] and
Tonelli [16] that each of the corresponding Fourier series expansions (2.5), (2.6), and
(2.7) converges uniformly for v > 0. To complete the proof of (7.2), for example, we
now multiply (2.6) by cos (co*m<„.i + </>.„■„•) and note that the resulting series also
converges uniformly for v > 0 so that for each e > 0 there exist integers M > m' and
N > n' such that the remainder of the new series after the terms

P AL'mnQi, k) cos (cos (c+ <£*„'„')> (7.4)

never exceeds \tP" in absolute value regardless of the value of t. Consequently, inte-
grating termwise up to and including the terms (7.4), multiplying through the resulting
relation by 2/TP", and taking limits we may thence interchange the order of limiting
and summation operations in this finite part of the series to conclude that

A'llAh, k) - 2 lim i [T 7'[cos (pt + dv)
T—oo -/ Jo

+ k cos (qt + 0«); h] cos (aw„.< + <*w„.) dt

< |;lim^ [T hP'dt = «,
H T-*co i Jo

(7.5)

all of which operations are permissible and valid provided the ratio p/q is irrational
and v > 0 so that (7.2) is thereby proven. Similar proofs may be given of course for
formulas (7.1) and (7.3) also.

Consider now the implications of the formulas (7.1), (7.2), and (7.3). First of all,
these formulas applied to the constant terms in the various Fourier series expansions
considered, assert that under the stated conditions time averages are equal to phase
averages. Secondly, since squaring Y'(X) Xn) is equivalent to replacing v by 2v, it is
now clear that the formulas (6.1), (6.2), and (6.3) previously given under the same con-
ditions for the average output power (P0 were indeed correct, at least for v > 0. In closing
we may note, finally, that in a sense we have here a simplified example of an ergodic
situation while the input function and output series are always almost periodic functions
in the sense of Bohr.
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