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We next consider evaluation of the following infinite series (see4):

S = k.x, ,
8 = 1

where

kf1 = 2.33, fcj1 = 4.22, k;l = 5.51, k? = 6.55,

and k'1 ~ (27r)1/2(2s — 1)1/2 for large s. If we evaluate

s„= i: fc.x<n>
3 = 1

we obtain the following results:

= 0.155s : S2 = 0.166, : S3 = 0.169, : Si = 0.1703.

These underestimate S. In order to obtain overestimates of S we evaluate, using the
previous approximation (5),

SL = Z k.x™ + knxlT\2n - l)2 Z (0o 1
s=i !an+i

^ E k,x(.n) + knxln\2n - l)2^)"1,
8" 1

where we have replaced summation by integration as before. This gives

S[ = 0.1944 : S'2 = 0.181, : Si = 0.178, : Si = 0.176, .

The mean values §(S„ + S^) are remarkably constant. We can say from these results
that 0.171 < S < 0.177 with a probable value of S = 0.174.

ON SIMPLE SUBHARMONICS*
By C. S. HSU** (University o/ Toledo, Toledo, Ohio)

Introduction. In a recent paper [l],f Rosenberg clarified considerably the curious
subharmonic phenomena of non-linear oscillations by introducing the concepts of strong
subharmonic solutions and of the simple subharmonics. He considered a system with a
single degree of freedom, whose mechanical model might be a mass under the action of
an elastic force, linear or non-linear, and of a simple harmonic forcing function of fre-
quencey co. The equation of motion of the system can be put in the form

^ + f(x) = Po cos at, (1)

where P0 is proportional to the amplitude of the external forcing function.
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If we are concerned only with the steady periodic solutions of (1), we can express
them in terms of Fourier expansions. If such an expansion contains a term Ar cos
(iwrf + <pr), where w, = co/r and r is an integer, and if Ar ^ 0, the solution is said to be
subharmonic of order 1 /r, and we have

x = Ar cos (-£ + #>,)+ Tl At cos (w;t + <p;).
\r / i*r (2)

Rosenberg called the solution a strong subharmonic of order 1 Jr, if | Ar | | A( | for all i.
He called the solution a pure subharmonic if A, 5^ 0 and Af = 0 for all i. A solution is
said to be a simple subharmonic if it is a pure subharmonic with zero phase angle <pr ,
i.e. x = x0 cos (cot/r).

Rosenberg showed that, for a class of differential equations of the following type

0 + r~2Z +k = k cost (r = 1,2,3, ••■), (3)

periodic solutions are of the simple subharmonic type

£ = cos r/r. (4)

Here a set of new variables has been introduced. In terms of the original variables
they are: t = ait, £ = x/x0 and k = P0/(x0co2). A table was included in [1] giving the
values of a,n) in (3). The linear problem is a special case of (3) and (4). Then Eqs. (3)
and (4) respectively become

^4 + (1 + fc)£ = k cos r, (5)

and

£ = cos r. (6)

This is the usual linear response solution.
In the present note the writer will try to amplify and discuss some aspects of this

interesting subharmonic problem. It will be shown that by a single transformation all
of the equations (3) and their subharmonic solutions (4) can be derived from the linear
case (5) and (6).

Tchebycheff polynomials. A careful study of Table 1 of [1] which gave the values
of a'n) indicates that a'rn) are simply the coefficients of various Tchebycheff polynomials
of the first kind. This was also mentioned in another paper [2] by Rosenberg. Thus
Eq. (3) can be written as

|l + r~\ + kTr(Q = k cos r (7)

and its periodic solution given by the simple subharmonic (4). For ease of reference
the Tchebycheff polynomials of the first kind will be briefly described here. The simplest
definition is as follows. If we put y = cos d, the Tchebycheff polynomial of the first
kind of order r, denoted by Tr(y), is defined as

Tr(y) = cos rd. (8)
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The first few of these are:

T0(y) = 1, T3(y) = 4y3 - 3y,

TM = y, Uy) = 8y* - 8y + 1, (9)
TM = 2y2 — 1,  

We note that if £ = cos (j/r), the sum of the first two terms of (7) is identically-
zero and the third term is precisely k cos t, from the definition of Tr. Thus (7) is satisfied.
Physically, this means that with a properly constituted elastic non-linearity there exists
an amplitude of the forcing term such that a simple subharmonic response will cause the
spring force to balance partly the inertia force and partly the external force all the time.

It is easily seen that (7) is not the only differential equation which possesses simple
subharmonic periodic solutions. As a matter of fact we have the equation

-j-f + r~2£ + k(—l)T/2TT(£) = k cos r, (r even integers) (10)
cLt

with periodic simple subharmonic solutions

£ = sin , (II)

and the equation

+ r~2% + k(—l)lr~1)/2Tr(^) = fcsin r (r odd integers) (12)

with solutions also given by (11).
Transformation with Tchebycheff polynomials. Let us now take a different approach

to arrive at Eq (7). Let us return to the linear problem with a forcing term, i.e. Eqs.
(5) and (6). If we apply the following transformation to (5) and (6)

I = Tr(v), (13)

where y is a function of r, Eq. (5) becomes

+ Tr(v) + kTr(v) = k cos r (14)

and the solution is, from (6) and (13),

t] — cos -• (15)r

Equation (14) may be rewritten as

\M + J ~ \jr} + ? v\+ \j? + ?v + kT'^~\= k cos r' (16)
by adding and subtracting the terms in the second square bracket. The first two square
brackets are, however, identically zero with £ and j? given by (6) and (15). It follows
that 77 = cos (r/r) must be a solution of
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£l + r~\ + kTr(v) = k cos r, (17)

which is the same as (7).

Similarly, by putting £ = ( — l)r/2 Tr(v) in (5) we can arrive at (10) and (11). Equa-
tion (12) and its solution can be established in the same manner by using a slightly
different form of (5).

This approach shows that by a single transformation all the non-linear differential
equations possessing simple subharmonics as their solutions can be derived from the
linear problem which we understand much better. In other words, the simple sub-
harmonic solutions might be considered merely as different representations of the same
linear response solution in various frameworks. The physical significance, if any, of
this transformation is not apparent at the present time.

Uniqueness of the solutions. There has been some discussion among interested people
concerning the uniqueness of the simple subharmonics as steady-state solutions of (7).
Since it is known that the linear response (6) is a unique steady state solution of (5),
and since Eq. (7) and its simple subharmonic solutions can be derived from the linear
case by a proper transformation, which is one-to-one when continuity conditions are
imposed on the solutions, it may be concluded that these simple subharmonic solutions
are unique so far as the steady state is concerned.
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Correction to my paper
ON THE DAMPED OSCILLATIONS EQUATION WITH

VARIABLE COEFFICIENTS
Quarterly of Applied Mathematics, XVI, 90-93 (1958)

By E. V. LAITONE (University of California, Berkeley)

Equation (13) should have been written

m > {0(OMO)2 + [m'(0) + p(0)w(0)/2]2) (13)
that is, the w'(0) should not be squared. Similarly the last equation on page 93 should
contain only a'(0) in the brackets.


