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valid for | 6 | < 1, or, finally,
Al = Zo Mle/(k + 9T, 4
valid for ¢ > 0, and, actually, for Re(e) > —k.
3. The expansion for the associated characteristic function. Consider the solution of
W+ AQIfE) + eg@lu = 0, 0
u(0) = 0, u’(0) = 1.
The classical iteration procedure for obtaining u shows that u is an analytic function of
A(e) and efor 0 < z < 1, for all e and A(e). Consequently, u is an analytic function of

e for Re(e) > b, uniformly in 0 < z < 1, and thus possesses an expansion

©

u= 2 u@e/k + T, )

n=0
valid for ¢ > 0.

4. Perturbation procedure. To determine the sequences {X,} and {u,(z)}, we
employ a standard perturbation technique starting with the equation

W’ + Nf@) + kég)/(1 — §lu = 0, W
u(0) = u(l) = 0.
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THE NUMERICAL SOLUTION OF AN INFINITE SET OF LINEAR
SIMULTANEOUS EQUATIONS*

By B. NOBLE (The Royal College of Science and Technology, Glasgow, Scotland)

The usual method for numerical solution of .

Zaraxa = br ) (T = 1’2) .‘.)’ ('l)

s=1

is to solve the first » equations in n unknowns for some fixed 7, and to regard the results
as approximations to the z, . The accuracy of this approximation is invariably doubtful.
A slight modification of the Choleski® or Crout® method for solving a set of simultaneous
linear equations can be used to provide a systematic procedure for solving the first
m X m equations with m = 1, 2, 3, - - - in succession. It is then possible to estimate in
various ways the error involved in solving only a finite number of equations. The following
discussion should be intelligible from either the Crout or the Choleski point of view.
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Using matrix notation, the equations AX = B are solved by decomposing the matrix
A into a product of triangular matrices A = LU where L is a lower triangular matrix
and U is an upper triangular matrix. The following systems are then solved in succession:

LY =B: UX=Y.

We shall adopt the layout used by Crout in which we start with an “original matrix”’
D and write down an “auxiliary matrix’’ E:

Ay g Qg y :aln)bl lll y Utz y =0, Un y Y
D=|ay,0,:, - ,0,.,,b|: E=|l, by, " U,
Anp y Qpz 5 * " 5y Qpp bn lnl lnz ctt lrm y Yn

where the [, , u,, , ¥, , are elements of L, U, Y, respectively. For instance U consists
of zeros below the principal diagonal, units in the diagonal and the u,, above the diagonal.

Elements of the auxiliary matrix are determined in the following order:

(i) Elements in the rth column on and below the principal diagonal (i.e.
A A I ]

(ii) Elements in the rth row to the right of the principal diagonal (i.e.
Uprsry *0 5 Upn s Yy).

This sequence is performed for r = 1, then for r = 2, and so on, up to r = =, by
means of the formulae

s—1
ln = a,, — E lrmums ] (T 2 8): Ups = ll—[ Z l""u""]’ (T < s)'

m=1 m=1

The proposed method replaces the solution of UX = Y by the following procedure
(z{™ is the mth approximation to z, , etc.).
(a) Take as a first approximation to the solution of the infinite system:

' =y 2z =0, r=23, ).

(b) Obtain a second approximation by solving:

2?4 ue® =0
7" = Y .
Then
(2) M (2, () . @
T, + 27 Ty =Yz z,” =0, (r=3,4,--).

(¢) Obtain a third approximation by solving:

(3) + u Zz + ulsz(ii) = 0

2 3
+ Uga2 ( ' = 0
3
23 = y3 .
Then
(3) (2) a3), (3) 2 3
) = + 2 2P = 2P 42

¥ =y, : ¥ =0, (r=4,5,6,---) andsoon.



100 NOTES [Vol. XVII, No. 1

The theory behind the method is obvious if we reflect that at the mth stage we have
obtained the exact solution of the first m equations in m unknowns.

As an example consider the following original matrix which is derived from the first
four equations of an infinite system® (the elements in the check column are just the
sums of the elements in the corresponding rows of the original matrix):

z z, Z3 Zs Constant Check
+5.665,118 —0.240,000 40.059,172 —0.022,400 +-2.670,644 8.132,534
—0.240,000 +-1.270,836 —0.103,806 --0.049,941 —0.049,299 0.927,672
+0.059,172 —0.103,806 -0.708,321 —0.051,132 +-0.006,400 0.618,955
—0.022,400 40.049,941 -—0.051,132 +0.489,615 —0.001,666 0.464,358.
The auxiliary matrix is:
+5.665,118 —0.042,365 -+0.010,445 —0.003,954 +40.471,419 1.435,545
—0.240,000 41.260,668 —0.080,353 -0.038,862 -0.050,641 1.009,150
+0.059,172 —0.101,299 4-0.699,563 —0.067,129 —0.023,393 0.909,478
—0.022,400 40.048,992 —0.046,961 +0.484,470 -0.010,969 1.010,969.
The procedure described above then gives

zV = +40.471,419.

2 = 40.002,145: ¥ = +40.050,641.

2® = 4+0.000,165: 23 = —0.001,880: z;* = —0.023,393.

z;¥ = 40.000,020: z¥ = —0.000,367: 2z = 40.000,736: =z;" = +0.010,969.

The values for z{¥ agree with those given in® to a unit in the sixth decimal place.
In addition, an estimate of accuracy can be obtained by comparing the magnitudes of
the corrections for successive values of m = 1, 2, 3, --- . By inspection of the above
results it appears that the approximate z, obtained by solving the 4 X 4 set of equations
are accurate to roughly 5, 4, 3, 3 decimal places for s = 1, 2, 3, 4 respectively.

When the corrections 2™ do not converge rapidly to zero it will be desirable to give
definite upper and lower limits for the unknowns. This may be easy if the corrections
alternate in sign. In more difficult cases the following procedure has proved useful.
Suppose that we have found the estimates z{™ of .z, by solving the first m equations in
m unknowns. Suppose that from these or otherwise it is possible to estimate the z, for
s=m+1,m+ 2, --- . Denote these estimates by X{™ (s > m). Then a second estimate
of the z, is given by the quantities (z{™ + u{™) where the u{™ satisfy

m ®

Yau™=— 2 a.X", (r =1tom). )

a=1 s=m+1

For sufficiently large m the u!{™ are small corrections and a comparatively crude estimate

of the sum on the right hand side of this equation is adequate. If convenient we can

3A. Weinstein and D. H. Rock, Quart. Appl. Math. 2, 262-266 (1944).
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replace the a,, by an approximation with the correct behavior for large s. It will often
be possible to replace the summation by integration.
As an example consider the following equations*:

2.759x, 4 0.355z, + 0.302z; 4 0.267x, = 1.0000
0.214x, 4 4.457z, + 0.227z, 4 0.214z, = 0.3333
0.143x, 4 0.178z, 4 5.691x; 4 0.178z, = 0.2000
0.107z, + 0.142z, 4 0.151z; + 6.703z, = 0.1429.

These are the first four equations in four unknowns from an infinite system for which
b, = (2r — 1)7! and it is known that for large r,

a,, ~ 2n)V2r — 1)V a,, ~ (2s — 1)'?/{(20)*(r + s — 1)}. 3)
Also all unknowns are positive so that by inspection
z, < aub, & @2m)7V%(2s — 1)7 4)
We shall use the following estimate in (2):
XM 2iM@em — 1)¥%(2s — 1)72, (5)

This will give an overestimate of the magnitude of the right hand side of (2) since from
(4) the z, decrease at least as rapidly as (2s — 1)™*? and from the numerical results
given below it will appear that the z{™ are overestimates of the z, . We replace the

right hand side of (2) by

_z(n) (2m - 1)8/2 fw dz
" (271')1/2 mi12 2 — D + 2 — 1)
= —gm _@m — D (gliﬂ:_l)
Tn om) 2 — 1) 108 2m :

The final results are presented in the following table where the upper figures give
z{™ , the lower give z{™ + u{™. The convergence of the results from above and below
as m is increased indicates that upper and lower limits have been established for the
unknowns. But the convergence is much slower than in the example given above and
it would be difficult to establish accurate estimates of the unknowns from the upper
limits alone.

‘D. 8. Jones, Proc. Roy. Soc. 217, 153-175 (1953).

a _ 0.3624

T, =
0.3412

o _ 08550 o _ 0.0577
0.3459 0.0531

o 0352w _ 00566  _ 0.0246
0.3469 0.0536 0.0225

M = 0.3512 oM = 0.0560 o = 0.0242 oW = 0.0140
0.3474 0.0539 0.0226 0.0128.
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We next consider evaluation of the following infinite series (see):
S = E knxt ?
8=1
where
kit = 2.33, k' = 4.22, k' = 5.51, k' = 6.55,
and k;' ~ (2r)"%(2s — 1)/ for large s. If we evaluate

8, = 2 ka™

g=1
we obtain the following results:
Sl = 0.1555 : Sg = 0.1661 . Sa = 0.1691 H S4 = 0.1705 .

These underestimate S. In order to obtain overestimates of S we evaluate, using the
previous approximation (5),

n o 1
r (n) (n) — 2 -
Su - ; k,:c, + knxn <2n 1) a-%l (28 — 1)2

~ D ka™ + karM@2n — 1)%(4n)7,

am1
where we have replaced summation by integration as before. This gives
Sy = 0.194, : S5 = 0.181; : S; = 0.178; : S: = 0.176, .

The mean values (S, + S’) are remarkably constant. We can say from these results
that 0.171 < S < 0.177 with a probable value of S = 0.174.

ON SIMPLE SUBHARMONICS*
By C. S. HSU** (University of Toledo, Toledo, Ohio)

Introduction. In a recent paper [1],1 Rosenberg clarified considerably the curious
subharmonic phenomena of non-linear oscillations by introducing the concepts of strong
subharmonic solutions and of the simple subharmonics. He considered a system with a
single degree of freedom, whose mechanical model might be a mass under the action of
an elastic force, linear or non-linear, and of a simple harmonic forcing function of fre-
quencey w. The equation of motion of the system can be put in the form

&’z
32 T 1@ = Po coswt, 1)
where P, is proportional to the amplitude of the external forcing function.

*Received June 16, 1958.
**Now affiliated with University of California, Berkeley.
tNumbers in square brackets refer to the bibliography at the end of the paper.



