—NOTES —

SOLUTION OF NON-LINEAR EQUATIONS
By ANDRE N. GLEYZAL (U. S. Naval Ordnance Laboratory)

A standard procedure for solving a set of n equations in n variables:

fi(xi) =0, ,j=1,-,n, (1)

where 7 is an integer and the f; are real functions of the variables z; may be described
as follows. We start with a trial point P as a first approximation, and expand the function
f: in the vicinity of P. Retaining only the linear portions of the expansions we solve
the resulting linear equations obtaining a point §. The point P is now replaced by @
and the calculation is repeated. It has been shown under mildly restrictive conditions
that this process yields a rapidly convergent series if the trial point P is sufficiently
close to the solution.

We consider the procedure where instead of @ we select a point R on the line PQ
which gives a minimum value to the sum of the squares of the function f; .

Suppose P = (¢;) is an approximate solution. Then, assuming the functions (1)
are analytic, let ’

¢ = o(dz;) = Z[l(&)+ Zaf‘d + 5 Z

where

f 2
Er ax dxk dx; + :I

dr; =z, — & , i)j7k’l=1}
Let

91
= v) = T [ 10+ S L.
Thus ¢ differs from ¢ by terms of order two or higher in dx; . Let

dx,' = du,‘

be a solution* of the linear equations:

1E) + X af‘d = 0.

Thus Q@ = (¢; + du;). Now consider the two functions of A:
e = o\ du;) = o(n),

¥ = ¢\ duy) = ¥(N).
For A = 0:
=1, do/d\ = dy/d\.
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Also, ¢()) is a parabola which takes on its minimum value, zero, at A = 1. The function
¢(\) is always non-negative. Hence ¢(\) must reach a relative minimum for a value
A = ., where 0 < A, £ . The quantity \,, may readily be calculated and the cor-
responding point:

R = (& + \aduy)

then used as a starting point for the calculation in place of ¢; . Thus ¢ must decrease with
every iteration. Moreover, the iterative method described above will converge in one
step if Eqgs. (1) are linear, and it has been found in many calculations that the method
converges rapidly if the initial approximation is sufficiently close to the solution.

If the derivatives df;/dz; are not readily found one may approximate them by
difference quotients Af;/Az; . In extremely non-linear problems where independent and
dependent variables become very small or very large in the process of calculation the
choice of suitable increments Az; may not be obvious. In this case one may take the
increments Az; to be differences in successive approximations of x; . It has been found
in many calculations that for sufficiently smooth functions approximately maximum
numerical accuracy is then obtained for the solution.

The method described here was successful in solving certain extremely non-linear
chemical equilibrium equations where independent and dependent variables were un-
predictably small or large. In other methods—such as the ‘“‘steepest descent method’’—
which were tried the rate of convergence decreased rapidly and the method became
impractical as the solution was approached, whereas in this method the rate of con-
vergence increased rapidly. Combinations of the steepest descent method with this
method suggest themselves. For example, let

z; =& +Ndu; + pdy;,

where u is a parameter and dv; = —grad ¢. The parameters A and u are then adjusted
so that ¢ is minimum.

ON CONVERGENT PERTURBATION EXPANSIONS*
By RICHARD BELLMAN (The Rand Corporation)
AND TOMLINSON FORT (University of South Carolina)

1. Introduction. In this paper, we wish to consider the Sturm-Liouville equation
u' 4+ MNf(x) + eg(@))u = 0, (1)
u(0) = u(1) = 0,

and the problem of obtaining power series expansions for the first characteristic value
and first characteristic function.

Let A\, and u,(z) be respectively the first characteristic value and associated charac-
teristic function of the equation

uw’ 4+ NM(@u = 0,
u(0) = u(1) = 0.
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